Einfache APIs zum Herunterladen ( hub
), Tokenisieren ( tokenizers
) und ( zukünftige Arbeit ) Modellkonvertierung ( models
) von HuggingFace? Modelle mit GoMLX.
EXPERIMENTELL und IN ENTWICKLUNG : Während das hub
-Paket stabil ist, befinden sich die tokenizers
und die zukünftigen models
noch in intensiver Entwicklung.
import ("github.com/gomlx/go-huggingface/hub""github.com/gomlx/go-huggingface/tokenizers")var ( // Modell-IDs für testing.hfModelIDs = []string{ "google/gemma-2 -2b-it", "sentence-transformers/all-MiniLM-L6-v2", „protectai/deberta-v3-base-zeroshot-v1-onnx“, „KnightsAnalytics/distilbert-base-uncased-finetuned-sst-2-english“, „KnightsAnalytics/distilbert-NER“, „SamLowe/roberta-base-go_emotions -onnx", } hfAuthToken = os.Getenv("HF_TOKEN") // Erstellen Sie Ihr HuggingFace-Authentifizierungstoken in Huggingface.co, um den Download von Modellen zu ermöglichen.)
for _, modelID := range hfModelIDs { fmt.Printf("n%s:n", modelID) repo := hub.New(modelID).WithAuth(hfAuthToken) for fileName, err := range repo.IterFileNames() { if err != nil { panic(err) } fmt.Printf("t%sn", fileName) } }
für _, modelID := range hfModelIDs { fmt.Printf("n%s:n", modelID) repo := hub.New(modelID).WithAuth(hfAuthToken) config, err := tokenizers.GetConfig(repo) if err != nil { panic(err) } fmt.Printf("ttokenizer_class=%sn", config.TokenizerClass) }
google/gemma-2-2b-it
Die Ausgabemeldung „Heruntergeladen“ erscheint nur, wenn die Tokenizer-Datei noch nicht zwischengespeichert ist, also nur beim ersten Mal:
repo := hub.New("google/gemma-2-2b-it").WithAuth(hfAuthToken)tokenizer, err := tokenizers.New(repo)if err != nil { panic(err) }sentence := " Das Buch liegt auf dem Tisch. „tokens := tokenizer.Encode(sentence)fmt.Printf("Sentence:t%sn", Satz)fmt.Printf("Tokens: t%vn", tokens)
Downloaded 1/1 files, 4.2 MB downloaded Sentence: The book is on the table. Tokens: [651 2870 603 611 573 3037 235265]
sentence-transformers/all-MiniLM-L6-v2
herunter und führen Sie es aus Nur die ersten drei Zeilen demonstrieren tatsächlich go-huggingface
. Die restlichen Zeilen verwenden github.com/gomlx/onnx-gomlx
um das ONNX-Modell zu analysieren und in GoMLX zu konvertieren, und dann github.com/gomlx/gomlx
um das konvertierte Modell für ein paar Sätze auszuführen.
// Holen Sie sich ONNX model.repo := hub.New("sentence-transformers/all-MiniLM-L6-v2").WithAuth(hfAuthToken)onnxFilePath, err := repo.DownloadFile("onnx/model.onnx")if err != nil { panic(err) }onnxModel, err := onnx.ReadFile(onnxFilePath)if err != nil { panic(err) }// ONNX-Variablen in GoMLX-Kontext konvertieren (der Variablen speichert):ctx := context.New()err = onnxModel.VariablesToContext(ctx)if err ! = nil { panic(err) }// Test input.sentences := []string{ "Dies ist ein Beispielsatz", „Jeder Satz wird konvertiert“}inputIDs := [][]int64{ {101, 2023, 2003, 2019, 2742, 6251, 102}, { 101, 2169, 6251, 2003, 4991, 102, 0}}tokenTypeIDs := [][]int64{ {0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0}}attentionMask := [][]int64{ {1, 1, 1, 1, 1, 1, 1}, {1, 1, 1, 1, 1, 1, 0}}// GoMLX-Diagramm mit model.embeddings ausführen := context.ExecOnce( backends.New(), ctx, func (ctx *context.Context, inputs [] *graph.Node) *graph.Node { modelOutputs := onnxModel.CallGraph(ctx, inputs[0].Graph(), map[string]*graph.Node{ „input_ids“: inputs[0], „attention_mask“: inputs[1], „token_type_ids“: inputs[2]}) geben modelOutputs[0 zurück ] }, inputIDs, AttentionMask, tokenTypeIDs)fmt.Printf("Sentences: t%qn", Sätze)fmt.Printf("Embeddings:t%sn", Embeddings)
Sentences: ["This is an example sentence" "Each sentence is converted"] Embeddings: [2][7][384]float32{ {{0.0366, -0.0162, 0.1682, ..., 0.0554, -0.1644, -0.2967}, {0.7239, 0.6399, 0.1888, ..., 0.5946, 0.6206, 0.4897}, {0.0064, 0.0203, 0.0448, ..., 0.3464, 1.3170, -0.1670}, ..., {0.1479, -0.0643, 0.1457, ..., 0.8837, -0.3316, 0.2975}, {0.5212, 0.6563, 0.5607, ..., -0.0399, 0.0412, -1.4036}, {1.0824, 0.7140, 0.3986, ..., -0.2301, 0.3243, -1.0313}}, {{0.2802, 0.1165, -0.0418, ..., 0.2711, -0.1685, -0.2961}, {0.8729, 0.4545, -0.1091, ..., 0.1365, 0.4580, -0.2042}, {0.4752, 0.5731, 0.6304, ..., 0.6526, 0.5612, -1.3268}, ..., {0.6113, 0.7920, -0.4685, ..., 0.0854, 1.0592, -0.2983}, {0.4115, 1.0946, 0.2385, ..., 0.8984, 0.3684, -0.7333}, {0.1374, 0.5555, 0.2678, ..., 0.5426, 0.4665, -0.5284}}}