Vicuna LoRA RLHF PyTorch
1.0.0
eine vollständige Pipeline zur Feinabstimmung von Vicuna LLM mit LoRA und RLHF auf Consumer-Hardware
穷人卡:2080Ti 12G
torch==2.0.0
cuda==11.8
python apply_delta.py --base ' decapoda-research/llama-7b-hf ' --target ' ./weights/vicuna-7b ' --delta lmsys/vicuna-7b-delta-v1.1
Überprüfen Sie zuerst src/peft/utils/save_and_load.py. Kommentieren Sie nur die Zeile 52 bis
# #to_return = {k: v for k, v in to_return.items() if (("lora_" in k and adapter_name in k) or ("bias" in k))}
dann rennen
python supervised_finetune.py --data_path ' ./data/merge_sample.json ' --output_path ' lora-Vicuna ' --model_path ' ./weights/vicuna-7b ' --eval_steps 200 --save_steps 200 --test_size 1
Überprüfen Sie zuerst die Peft-Version. Wenn Peft nicht 0.2.0 ist, sollte Peft==0.2.0 installiert werden
pip uninstall peft -y
pip install peft==0.2.0 # 0.3.0.dev0 has many errors
python merge_peft_adapter.py --model_name ' lora-Vicuna '
pip uninstall peft -y
pip install git+https://github.com/huggingface/peft.git # then comments peft/utis/save_and_load.py line 52.
python train_reward_model.py --model_name ' ./weights/vicuna-7b ' --gradient_accumulation_steps 32 --per_device_train_batch_size 1 --train_subset 100 --eval_subset 10 --local_rank 0 --bf16 False
python merge_peft_adapter.py --model_name ./reward_model_vicuna-7b
python tuning_lm_with_rl.py --model_name ' ./lora-Vicuna-adapter-merged ' --reward_model_name ' ./reward_model_vicuna-7b-adapter-merged ' --adafactor False --tokenizer_name ' decapoda-research/llama-7b-hf ' --save_freq 100 --output_max_length 128 --batch_size 1 --gradient_accumulation_steps 1 --batched_gen True --ppo_epochs 1 --seed 0 --learning_rate 1.4e-5 --early_stopping True --output_dir ' ./tuning_llama_rl_checkpoints '
value
, den wir auf 0 einfügen können. Dieser Transformator wird verwendet在github上的最新代码, 我在发现这个问题的时候, 隔天发现在transformer的github上8小时前才刚刚修复了这个问题.apply_delta.py ist FastChat.
Anforderungen 主要是按照 alpaca-lora 来配环境.
Wenn Ihnen dieses Projekt hilft, die Entwicklungszeit zu verkürzen, können Sie mir eine Tasse Kaffee geben :)
Alipay(支付宝)
WechatPay(微信)
MIT © Kun