Wir haben KoGPT2 verwendet, das von SKT-AI mit etwa 20 GB koreanischen Daten vorab trainiert wurde. Um Liedtexte zu schreiben, haben wir zunächst verfeinerte Textdaten, Romane, Artikel usw., deren Urheberrechte abgelaufen sind, verfeinert und den einzelnen Daten unterschiedliche Gewichtungen gegeben. Sie können auch Genres empfangen und die Lernergebnisse für Liedtexte für jedes Musikgenre anzeigen.
Darüber hinaus hat Colab Google Drive und Dropbbox für reibungsloses Lernen verknüpft. Nachdem Sie die erlernten Zwischenergebnisse von Google Drive nach Dropbbox verschoben haben, löschen Sie die Ergebnisse aus Google Drive. Code dazu
Wenn es schwierig ist, mit KoGPT2-FineTuning mit dem geänderten Code der Version 2 zu arbeiten, der Datensätze im CSV-Format für jedes Musikgenre empfängt, verwenden Sie bitte Version 1.1.
Unten können Sie die Ergebnisse des Erlernens verschiedener koreanischer Liedtexte überprüfen. Wir werden auch an verschiedenen anderen Projekten arbeiten.
Gewicht | Genre | Text |
---|---|---|
1100,0 | Ballade | „Du weißt, wie ich mich fühle.nnnIch starre dich nur ausdruckslos an wie ein Pharao.nnnIch habe keine andere Wahl, als aufzugeben …“ |
... |
python main.py --epoch=200 --data_file_path=./dataset/lyrics_dataset.csv --save_path=./checkpoint/ --load_path=./checkpoint/genre/KoGPT2_checkpoint_296000.tar --batch_size=1
parser . add_argument ( '--epoch' , type = int , default = 200 ,
help = "epoch 를 통해서 학습 범위를 조절합니다." )
parser . add_argument ( '--save_path' , type = str , default = './checkpoint/' ,
help = "학습 결과를 저장하는 경로입니다." )
parser . add_argument ( '--load_path' , type = str , default = './checkpoint/Alls/KoGPT2_checkpoint_296000.tar' ,
help = "학습된 결과를 불러오는 경로입니다." )
parser . add_argument ( '--samples' , type = str , default = "samples/" ,
help = "생성 결과를 저장할 경로입니다." )
parser . add_argument ( '--data_file_path' , type = str , default = 'dataset/lyrics_dataset.txt' ,
help = "학습할 데이터를 불러오는 경로입니다." )
parser . add_argument ( '--batch_size' , type = int , default = 8 ,
help = "batch_size 를 지정합니다." )
Mit Colab können Sie Feinabstimmungscode ausführen.
function ClickConnect ( ) {
// 백엔드를 할당하지 못했습니다.
// GPU이(가) 있는 백엔드를 사용할 수 없습니다. 가속기가 없는 런타임을 사용하시겠습니까?
// 취소 버튼을 찾아서 클릭
var buttons = document . querySelectorAll ( "colab-dialog.yes-no-dialog paper-button#cancel" ) ;
buttons . forEach ( function ( btn ) {
btn . click ( ) ;
} ) ;
console . log ( "1분 마다 다시 연결" ) ;
document . querySelector ( "#top-toolbar > colab-connect-button" ) . click ( ) ;
}
setInterval ( ClickConnect , 1000 * 60 ) ;
function CleanCurrentOutput ( ) {
var btn = document . querySelector ( ".output-icon.clear_outputs_enabled.output-icon-selected[title$='현재 실행 중...'] iron-icon[command=clear-focused-or-selected-outputs]" ) ;
if ( btn ) {
console . log ( "10분 마다 출력 지우기" ) ;
btn . click ( ) ;
}
}
setInterval ( CleanCurrentOutput , 1000 * 60 * 10 ) ;
nvidia-smi.exe
python generator.py --temperature=1.0 --text_size=1000 --tmp_sent=""
python generator.py --temperature=5.0 --text_size=500 --tmp_sent=""
parser . add_argument ( '--temperature' , type = float , default = 0.7 ,
help = "temperature 를 통해서 글의 창의성을 조절합니다." )
parser . add_argument ( '--top_p' , type = float , default = 0.9 ,
help = "top_p 를 통해서 글의 표현 범위를 조절합니다." )
parser . add_argument ( '--top_k' , type = int , default = 40 ,
help = "top_k 를 통해서 글의 표현 범위를 조절합니다." )
parser . add_argument ( '--text_size' , type = int , default = 250 ,
help = "결과물의 길이를 조정합니다." )
parser . add_argument ( '--loops' , type = int , default = - 1 ,
help = "글을 몇 번 반복할지 지정합니다. -1은 무한반복입니다." )
parser . add_argument ( '--tmp_sent' , type = str , default = "사랑" ,
help = "글의 시작 문장입니다." )
parser . add_argument ( '--load_path' , type = str , default = "./checkpoint/Alls/KoGPT2_checkpoint_296000.tar" ,
help = "학습된 결과물을 저장하는 경로입니다." )
Sie können den Generator mit Colab ausführen.
Um lernbedingte Änderungen zu überprüfen, greifen Sie auf das Tensorboard zu und überprüfen Sie Verlust und Text.
tensorboard --logdir=runs
@misc{KoGPT2-FineTuning,
author = {gyung},
title = {KoGPT2-FineTuning},
year = {2020},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {url{https://github.com/gyunggyung/KoGPT2-FineTuning}},
}
Detaillierte Ergebnisse finden Sie in den Beispielen. Weitere Informationen zum Thema Lernen finden Sie in verwandten Beiträgen.
https://github.com/openai/gpt-2
https://github.com/nshepperd/gpt-2
https://github.com/SKT-AI/KoGPT2
https://github.com/asyml/texar-pytorch/tree/master/examples/gpt-2
https://github.com/graykode/gpt-2-Pytorch
https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
https://github.com/shbictai/narrativeKoGPT2
https://github.com/ssut/py-hanspell
https://github.com/likejazz/korean-sentence-splitter