Implementierung von Phenaki Video, das Mask GIT verwendet, um textgesteuerte Videos mit einer Länge von bis zu 2 Minuten zu erstellen, in Pytorch. Es wird auch eine andere Technik kombinieren, die einen Token-Kritiker für potenziell noch bessere Generationen beinhaltet
Bitte melden Sie sich an, wenn Sie daran interessiert sind, diese Arbeit öffentlich zu reproduzieren
Erklärung der KI-Kaffeepause
Stability.ai für das großzügige Sponsoring für die Arbeit an der Spitzenforschung im Bereich der künstlichen Intelligenz
? Huggingface für ihre tollen Transformers und Beschleunigungsbibliothek
Guillem für seine fortlaufenden Beiträge
Du? Wenn Sie ein großartiger Ingenieur und/oder Forscher für maschinelles Lernen sind, können Sie gerne an der Grenze der generativen Open-Source-KI mitarbeiten
$ pip install phenaki-pytorch
C-ViViT
import torch
from phenaki_pytorch import CViViT , CViViTTrainer
cvivit = CViViT (
dim = 512 ,
codebook_size = 65536 ,
image_size = 256 ,
patch_size = 32 ,
temporal_patch_size = 2 ,
spatial_depth = 4 ,
temporal_depth = 4 ,
dim_head = 64 ,
heads = 8
). cuda ()
trainer = CViViTTrainer (
cvivit ,
folder = '/path/to/images/or/videos' ,
batch_size = 4 ,
grad_accum_every = 4 ,
train_on_images = False , # you can train on images first, before fine tuning on video, for sample efficiency
use_ema = False , # recommended to be turned on (keeps exponential moving averaged cvivit) unless if you don't have enough resources
num_train_steps = 10000
)
trainer . train () # reconstructions and checkpoints will be saved periodically to ./results
Phenaki
import torch
from phenaki_pytorch import CViViT , MaskGit , Phenaki
cvivit = CViViT (
dim = 512 ,
codebook_size = 65536 ,
image_size = ( 256 , 128 ), # video with rectangular screen allowed
patch_size = 32 ,
temporal_patch_size = 2 ,
spatial_depth = 4 ,
temporal_depth = 4 ,
dim_head = 64 ,
heads = 8
)
cvivit . load ( '/path/to/trained/cvivit.pt' )
maskgit = MaskGit (
num_tokens = 5000 ,
max_seq_len = 1024 ,
dim = 512 ,
dim_context = 768 ,
depth = 6 ,
)
phenaki = Phenaki (
cvivit = cvivit ,
maskgit = maskgit
). cuda ()
videos = torch . randn ( 3 , 3 , 17 , 256 , 128 ). cuda () # (batch, channels, frames, height, width)
mask = torch . ones (( 3 , 17 )). bool (). cuda () # [optional] (batch, frames) - allows for co-training videos of different lengths as well as video and images in the same batch
texts = [
'a whale breaching from afar' ,
'young girl blowing out candles on her birthday cake' ,
'fireworks with blue and green sparkles'
]
loss = phenaki ( videos , texts = texts , video_frame_mask = mask )
loss . backward ()
# do the above for many steps, then ...
video = phenaki . sample ( texts = 'a squirrel examines an acorn' , num_frames = 17 , cond_scale = 5. ) # (1, 3, 17, 256, 128)
# so in the paper, they do not really achieve 2 minutes of coherent video
# at each new scene with new text conditioning, they condition on the previous K frames
# you can easily achieve this with this framework as so
video_prime = video [:, :, - 3 :] # (1, 3, 3, 256, 128) # say K = 3
video_next = phenaki . sample ( texts = 'a cat watches the squirrel from afar' , prime_frames = video_prime , num_frames = 14 ) # (1, 3, 14, 256, 128)
# the total video
entire_video = torch . cat (( video , video_next ), dim = 2 ) # (1, 3, 17 + 14, 256, 128)
# and so on...
Oder importieren Sie einfach die Funktion make_video
# ... above code
from phenaki_pytorch import make_video
entire_video , scenes = make_video ( phenaki , texts = [
'a squirrel examines an acorn buried in the snow' ,
'a cat watches the squirrel from a frosted window sill' ,
'zoom out to show the entire living room, with the cat residing by the window sill'
], num_frames = ( 17 , 14 , 14 ), prime_lengths = ( 5 , 5 ))
entire_video . shape # (1, 3, 17 + 14 + 14 = 45, 256, 256)
# scenes - List[Tensor[3]] - video segment of each scene
Das ist es!
Ein neues Papier schlägt vor, dass man, anstatt sich auf die vorhergesagten Wahrscheinlichkeiten jedes Tokens als Maß für das Vertrauen zu verlassen, einen zusätzlichen Kritiker darin trainieren kann, zu entscheiden, was während der Stichprobe iterativ maskiert werden soll. Sie können diesen Kritiker optional für potenziell bessere Generationen trainieren, wie unten gezeigt
import torch
from phenaki_pytorch import CViViT , MaskGit , TokenCritic , Phenaki
cvivit = CViViT (
dim = 512 ,
codebook_size = 65536 ,
image_size = ( 256 , 128 ),
patch_size = 32 ,
temporal_patch_size = 2 ,
spatial_depth = 4 ,
temporal_depth = 4 ,
dim_head = 64 ,
heads = 8
)
maskgit = MaskGit (
num_tokens = 65536 ,
max_seq_len = 1024 ,
dim = 512 ,
dim_context = 768 ,
depth = 6 ,
)
# (1) define the critic
critic = TokenCritic (
num_tokens = 65536 ,
max_seq_len = 1024 ,
dim = 512 ,
dim_context = 768 ,
depth = 6 ,
has_cross_attn = True
)
trainer = Phenaki (
maskgit = maskgit ,
cvivit = cvivit ,
critic = critic # and then (2) pass it into Phenaki
). cuda ()
texts = [
'a whale breaching from afar' ,
'young girl blowing out candles on her birthday cake' ,
'fireworks with blue and green sparkles'
]
videos = torch . randn ( 3 , 3 , 3 , 256 , 128 ). cuda () # (batch, channels, frames, height, width)
loss = trainer ( videos = videos , texts = texts )
loss . backward ()
Oder noch einfacher: Verwenden Sie MaskGit
selbst einfach als Selbstkritiker (Nijkamp et al.), indem Sie bei der Initialisierung von Phenaki
self_token_critic = True
setzen
phenaki = Phenaki (
...,
self_token_critic = True # set this to True
)
Jetzt sollten Ihre Generationen erheblich verbessert werden!
Dieses Repository soll es dem Forscher auch ermöglichen, Text-zu-Bild und dann Text-zu-Video zu trainieren. Ebenso sollte der Forscher für ein bedingungsloses Training in der Lage sein, zunächst anhand von Bildern zu trainieren und dann die Feinabstimmung anhand von Videos vorzunehmen. Unten finden Sie ein Beispiel für Text-to-Video
import torch
from torch . utils . data import Dataset
from phenaki_pytorch import CViViT , MaskGit , Phenaki , PhenakiTrainer
cvivit = CViViT (
dim = 512 ,
codebook_size = 65536 ,
image_size = 256 ,
patch_size = 32 ,
temporal_patch_size = 2 ,
spatial_depth = 4 ,
temporal_depth = 4 ,
dim_head = 64 ,
heads = 8
)
cvivit . load ( '/path/to/trained/cvivit.pt' )
maskgit = MaskGit (
num_tokens = 5000 ,
max_seq_len = 1024 ,
dim = 512 ,
dim_context = 768 ,
depth = 6 ,
unconditional = False
)
phenaki = Phenaki (
cvivit = cvivit ,
maskgit = maskgit
). cuda ()
# mock text video dataset
# you will have to extend your own, and return the (<video tensor>, <caption>) tuple
class MockTextVideoDataset ( Dataset ):
def __init__ (
self ,
length = 100 ,
image_size = 256 ,
num_frames = 17
):
super (). __init__ ()
self . num_frames = num_frames
self . image_size = image_size
self . len = length
def __len__ ( self ):
return self . len
def __getitem__ ( self , idx ):
video = torch . randn ( 3 , self . num_frames , self . image_size , self . image_size )
caption = 'video caption'
return video , caption
dataset = MockTextVideoDataset ()
# pass in the dataset
trainer = PhenakiTrainer (
phenaki = phenaki ,
batch_size = 4 ,
grad_accum_every = 4 ,
train_on_images = False , # if your mock dataset above return (images, caption) pairs, set this to True
dataset = dataset , # pass in your dataset here
sample_texts_file_path = '/path/to/captions.txt' # each caption should be on a new line, during sampling, will be randomly drawn
)
trainer . train ()
Unbedingt ist wie folgt
ex. bedingungsloses Bild- und Videotraining
import torch
from phenaki_pytorch import CViViT , MaskGit , Phenaki , PhenakiTrainer
cvivit = CViViT (
dim = 512 ,
codebook_size = 65536 ,
image_size = 256 ,
patch_size = 32 ,
temporal_patch_size = 2 ,
spatial_depth = 4 ,
temporal_depth = 4 ,
dim_head = 64 ,
heads = 8
)
cvivit . load ( '/path/to/trained/cvivit.pt' )
maskgit = MaskGit (
num_tokens = 5000 ,
max_seq_len = 1024 ,
dim = 512 ,
dim_context = 768 ,
depth = 6 ,
unconditional = False
)
phenaki = Phenaki (
cvivit = cvivit ,
maskgit = maskgit
). cuda ()
# pass in the folder to images or video
trainer = PhenakiTrainer (
phenaki = phenaki ,
batch_size = 4 ,
grad_accum_every = 4 ,
train_on_images = True , # for sake of example, bottom is folder of images
dataset = '/path/to/images/or/video'
)
trainer . train ()
Übergeben Sie die Maskenwahrscheinlichkeit an Maskgit und Auto-Mask und erhalten Sie den Kreuzentropieverlust
Aufmerksamkeit erregen + T5-Einbettungscode von Imagen-Pytorch erhalten und die kostenlose Klassifikator-Anleitung verkabeln lassen
Verdrahten Sie das vollständige VQGAN-VAE für C-Vivit. Nehmen Sie einfach das, was bereits in Parti-Pytorch enthalten ist, stellen Sie jedoch sicher, dass Sie einen Stylegan-Diskriminator verwenden, wie im Papier beschrieben
Vollständiger Token-Kritiker-Trainingscode
Vollständiger erster Durchgang der geplanten Maskgit-Probenahme + Token-Kritiker (optional ohne, wenn der Forscher keine zusätzliche Schulung durchführen möchte)
Inferenzcode, der eine gleitende Zeit + Konditionierung für K vergangene Frames ermöglicht
Alibi pos Voreingenommenheit für zeitliche Aufmerksamkeit
Geben Sie der räumlichen Aufmerksamkeit die stärkste Positionsvoreingenommenheit
Stellen Sie sicher, dass Sie einen Stylegan-ähnlichen Diskriminator verwenden
3D relative Positionsabweichung für Maskgit
Stellen Sie sicher, dass Maskgit auch das Training von Bildern unterstützen kann, und stellen Sie sicher, dass es auf dem lokalen Computer funktioniert
Erstellen Sie auch die Option, den Token-Kritiker mit dem Text zu konditionieren
sollte in der Lage sein, zunächst die Text-zu-Bild-Generierung zu trainieren
Stellen Sie sicher, dass der Kritiker-Trainer Cvivit aufnehmen und automatisch die Video-Patch-Form für die relative Positionsvoreingenommenheit übergeben kann – stellen Sie sicher, dass der Kritiker auch eine optimale relative Positionsvoreingenommenheit erhält
Trainingscode für cvivit
cvivit in eine eigene Datei verschieben
bedingungslose Generationen (sowohl Video als auch Bilder)
Wir verkabeln Accelerator für Multi-GPU-Training für C-Vivit und Maskgit
Fügen Sie Depthwise-Conv zu Cvivit hinzu, um die Position zu generieren
Einige grundlegende Videomanipulationscodes ermöglichen das Speichern des abgetasteten Tensors als GIF
Grundlegender Schulungscode für Kritiker
Fügen Sie auch die Positionsgenerierung dsconv zu maskgit hinzu
Outfit anpassbare Selbstaufmerksamkeitsblöcke für Stylegan-Diskriminator
Fügen Sie die gesamte Spitzenforschung für das Training stabilisierender Transformatoren hinzu
Holen Sie sich einen grundlegenden Kritiker-Sampling-Code und zeigen Sie einen Vergleich mit und ohne Kritiker
Bringen Sie eine verkettete Token-Verschiebung ein (zeitliche Dimension)
Fügen Sie einen DDPM-Upsampler hinzu, entweder einen Port von imagen-pytorch, oder schreiben Sie hier einfach eine einfache Version neu
Achten Sie auf die Maskierung in Maskgit
Testen Sie Maskgit + Kritiker allein am Oxford Flowers-Datensatz
Unterstützt rechteckige Videos
Fügen Sie Flash-Aufmerksamkeit als Option für alle Transformatoren hinzu und zitieren Sie @tridao
@article { Villegas2022PhenakiVL ,
title = { Phenaki: Variable Length Video Generation From Open Domain Textual Description } ,
author = { Ruben Villegas and Mohammad Babaeizadeh and Pieter-Jan Kindermans and Hernan Moraldo and Han Zhang and Mohammad Taghi Saffar and Santiago Castro and Julius Kunze and D. Erhan } ,
journal = { ArXiv } ,
year = { 2022 } ,
volume = { abs/2210.02399 }
}
@article { Chang2022MaskGITMG ,
title = { MaskGIT: Masked Generative Image Transformer } ,
author = { Huiwen Chang and Han Zhang and Lu Jiang and Ce Liu and William T. Freeman } ,
journal = { 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) } ,
year = { 2022 } ,
pages = { 11305-11315 }
}
@article { Lezama2022ImprovedMI ,
title = { Improved Masked Image Generation with Token-Critic } ,
author = { Jos{'e} Lezama and Huiwen Chang and Lu Jiang and Irfan Essa } ,
journal = { ArXiv } ,
year = { 2022 } ,
volume = { abs/2209.04439 }
}
@misc { ding2021cogview ,
title = { CogView: Mastering Text-to-Image Generation via Transformers } ,
author = { Ming Ding and Zhuoyi Yang and Wenyi Hong and Wendi Zheng and Chang Zhou and Da Yin and Junyang Lin and Xu Zou and Zhou Shao and Hongxia Yang and Jie Tang } ,
year = { 2021 } ,
eprint = { 2105.13290 } ,
archivePrefix = { arXiv } ,
primaryClass = { cs.CV }
}
@misc { shazeer2020glu ,
title = { GLU Variants Improve Transformer } ,
author = { Noam Shazeer } ,
year = { 2020 } ,
url = { https://arxiv.org/abs/2002.05202 }
}
@misc { press2021ALiBi ,
title = { Train Short, Test Long: Attention with Linear Biases Enable Input Length Extrapolation } ,
author = { Ofir Press and Noah A. Smith and Mike Lewis } ,
year = { 2021 } ,
url = { https://ofir.io/train_short_test_long.pdf }
}
@article { Liu2022SwinTV ,
title = { Swin Transformer V2: Scaling Up Capacity and Resolution } ,
author = { Ze Liu and Han Hu and Yutong Lin and Zhuliang Yao and Zhenda Xie and Yixuan Wei and Jia Ning and Yue Cao and Zheng Zhang and Li Dong and Furu Wei and Baining Guo } ,
journal = { 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) } ,
year = { 2022 } ,
pages = { 11999-12009 }
}
@inproceedings { Nijkamp2021SCRIPTSP ,
title = { SCRIPT: Self-Critic PreTraining of Transformers } ,
author = { Erik Nijkamp and Bo Pang and Ying Nian Wu and Caiming Xiong } ,
booktitle = { North American Chapter of the Association for Computational Linguistics } ,
year = { 2021 }
}
@misc { https://doi.org/10.48550/arxiv.2302.01327 ,
doi = { 10.48550/ARXIV.2302.01327 } ,
url = { https://arxiv.org/abs/2302.01327 } ,
author = { Kumar, Manoj and Dehghani, Mostafa and Houlsby, Neil } ,
title = { Dual PatchNorm } ,
publisher = { arXiv } ,
year = { 2023 } ,
copyright = { Creative Commons Attribution 4.0 International }
}
@misc { gilmer2023intriguing
title = { Intriguing Properties of Transformer Training Instabilities } ,
author = { Justin Gilmer, Andrea Schioppa, and Jeremy Cohen } ,
year = { 2023 } ,
status = { to be published - one attention stabilization technique is circulating within Google Brain, being used by multiple teams }
}
@misc { mentzer2023finite ,
title = { Finite Scalar Quantization: VQ-VAE Made Simple } ,
author = { Fabian Mentzer and David Minnen and Eirikur Agustsson and Michael Tschannen } ,
year = { 2023 } ,
eprint = { 2309.15505 } ,
archivePrefix = { arXiv } ,
primaryClass = { cs.CV }
}
@misc { yu2023language ,
title = { Language Model Beats Diffusion -- Tokenizer is Key to Visual Generation } ,
author = { Lijun Yu and José Lezama and Nitesh B. Gundavarapu and Luca Versari and Kihyuk Sohn and David Minnen and Yong Cheng and Agrim Gupta and Xiuye Gu and Alexander G. Hauptmann and Boqing Gong and Ming-Hsuan Yang and Irfan Essa and David A. Ross and Lu Jiang } ,
year = { 2023 } ,
eprint = { 2310.05737 } ,
archivePrefix = { arXiv } ,
primaryClass = { cs.CV }
}