Implementierung von Classifier Free Guidance in Pytorch mit Schwerpunkt auf Textkonditionierung und Flexibilität zur Einbindung mehrerer Texteinbettungsmodelle, wie in eDiff-I
Es ist jetzt klar, dass Textführung die ultimative Schnittstelle zu Modellen ist. Dieses Repository nutzt etwas Python-Dekorator-Magie, um die Integration von SOTA-Textkonditionierung in jedes Modell zu vereinfachen.
StabilityAI für das großzügige Sponsoring sowie meine anderen Sponsoren da draußen
? Huggingface für ihre erstaunliche Transformers-Bibliothek. Das Textkonditionierungsmodul verwendet T5-Einbettungen, wie neueste Forschungsergebnisse empfehlen
OpenCLIP zur Bereitstellung von SOTA-Open-Source-CLIP-Modellen. Das eDiff-Modell erfährt durch die Kombination der T5-Einbettungen mit CLIP-Texteinbettungen enorme Verbesserungen
$ pip install classifier-free-guidance-pytorch
import torch
from classifier_free_guidance_pytorch import TextConditioner
text_conditioner = TextConditioner (
model_types = 't5' ,
hidden_dims = ( 256 , 512 ),
hiddens_channel_first = False ,
cond_drop_prob = 0.2 # conditional dropout 20% of the time, must be greater than 0. to unlock classifier free guidance
). cuda ()
# pass in your text as a List[str], and get back a List[callable]
# each callable function receives the hiddens in the dimensions listed at init (hidden_dims)
first_condition_fn , second_condition_fn = text_conditioner ([ 'a dog chasing after a ball' ])
# these hiddens will be in the direct flow of your model, say in a unet
first_hidden = torch . randn ( 1 , 16 , 256 ). cuda ()
second_hidden = torch . randn ( 1 , 32 , 512 ). cuda ()
# conditioned features
first_conditioned = first_condition_fn ( first_hidden )
second_conditioned = second_condition_fn ( second_hidden )
Wenn Sie eine auf Queraufmerksamkeit basierende Konditionierung verwenden möchten (jede versteckte Funktion in Ihrem Netzwerk kann sich um einzelne Unterwort-Tokens kümmern), importieren Sie stattdessen einfach den AttentionTextConditioner
. Ruhe ist das Gleiche
from classifier_free_guidance_pytorch import AttentionTextConditioner
text_conditioner = AttentionTextConditioner (
model_types = ( 't5' , 'clip' ), # something like in eDiff paper, where they used both T5 and Clip for even better results (Balaji et al.)
hidden_dims = ( 256 , 512 ),
cond_drop_prob = 0.2
)
Dies ist in Arbeit, um die Textkonditionierung Ihres Netzwerks so einfach wie möglich zu gestalten.
Nehmen wir zunächst an, Sie haben ein einfaches zweischichtiges Netzwerk
import torch
from torch import nn
class MLP ( nn . Module ):
def __init__ (
self ,
dim
):
super (). __init__ ()
self . proj_in = nn . Sequential ( nn . Linear ( dim , dim * 2 ), nn . ReLU ())
self . proj_mid = nn . Sequential ( nn . Linear ( dim * 2 , dim ), nn . ReLU ())
self . proj_out = nn . Linear ( dim , 1 )
def forward (
self ,
data
):
hiddens1 = self . proj_in ( data )
hiddens2 = self . proj_mid ( hiddens1 )
return self . proj_out ( hiddens2 )
# instantiate model and pass in some data, get (in this case) a binary prediction
model = MLP ( dim = 256 )
data = torch . randn ( 2 , 256 )
pred = model ( data )
Sie möchten die ausgeblendeten Ebenen ( hiddens1
und hiddens2
) mit Text konditionieren. Jedes Batch-Element würde hier eine eigene Freitextkonditionierung erhalten
Mithilfe dieses Repositorys wurde dies auf ca. 3 Schritte reduziert.
import torch
from torch import nn
from classifier_free_guidance_pytorch import classifier_free_guidance_class_decorator
@ classifier_free_guidance_class_decorator
class MLP ( nn . Module ):
def __init__ ( self , dim ):
super (). __init__ ()
self . proj_in = nn . Sequential ( nn . Linear ( dim , dim * 2 ), nn . ReLU ())
self . proj_mid = nn . Sequential ( nn . Linear ( dim * 2 , dim ), nn . ReLU ())
self . proj_out = nn . Linear ( dim , 1 )
def forward (
self ,
inp ,
cond_fns # List[Callable] - (1) your forward function now receives a list of conditioning functions, which you invoke on your hidden tensors
):
cond_hidden1 , cond_hidden2 = cond_fns # conditioning functions are given back in the order of the `hidden_dims` set on the text conditioner
hiddens1 = self . proj_in ( inp )
hiddens1 = cond_hidden1 ( hiddens1 ) # (2) condition the first hidden layer with FiLM
hiddens2 = self . proj_mid ( hiddens1 )
hiddens2 = cond_hidden2 ( hiddens2 ) # condition the second hidden layer with FiLM
return self . proj_out ( hiddens2 )
# instantiate your model - extra keyword arguments will need to be defined, prepended by `text_condition_`
model = MLP (
dim = 256 ,
text_condition_type = 'film' , # can be film, attention, or null (none)
text_condition_model_types = ( 't5' , 'clip' ), # in this example, conditioning on both T5 and OpenCLIP
text_condition_hidden_dims = ( 512 , 256 ), # and pass in the hidden dimensions you would like to condition on. in this case there are two hidden dimensions (dim * 2 and dim, after the first and second projections)
text_condition_cond_drop_prob = 0.25 # conditional dropout probability for classifier free guidance. can be set to 0. if you do not need it and just want the text conditioning
)
# now you have your input data as well as corresponding free text as List[str]
data = torch . randn ( 2 , 256 )
texts = [ 'a description' , 'another description' ]
# (3) train your model, passing in your list of strings as 'texts'
pred = model ( data , texts = texts )
# after much training, you can now do classifier free guidance by passing in a condition scale of > 1. !
model . eval ()
guided_pred = model ( data , texts = texts , cond_scale = 3. , remove_parallel_component = True ) # cond_scale stands for conditioning scale from classifier free guidance paper
komplette Filmkonditionierung, ohne Sichter freie Führung (hier verwendet)
Fügen Sie eine klassifikatorfreie Anleitung zur Filmkonditionierung hinzu
vollständige Kreuzaufmerksamkeitskonditionierung
Stresstest für Spacetime Unet in Make-a-Video
@article { Ho2022ClassifierFreeDG ,
title = { Classifier-Free Diffusion Guidance } ,
author = { Jonathan Ho } ,
journal = { ArXiv } ,
year = { 2022 } ,
volume = { abs/2207.12598 }
}
@article { Balaji2022eDiffITD ,
title = { eDiff-I: Text-to-Image Diffusion Models with an Ensemble of Expert Denoisers } ,
author = { Yogesh Balaji and Seungjun Nah and Xun Huang and Arash Vahdat and Jiaming Song and Karsten Kreis and Miika Aittala and Timo Aila and Samuli Laine and Bryan Catanzaro and Tero Karras and Ming-Yu Liu } ,
journal = { ArXiv } ,
year = { 2022 } ,
volume = { abs/2211.01324 }
}
@inproceedings { dao2022flashattention ,
title = { Flash{A}ttention: Fast and Memory-Efficient Exact Attention with {IO}-Awareness } ,
author = { Dao, Tri and Fu, Daniel Y. and Ermon, Stefano and Rudra, Atri and R{'e}, Christopher } ,
booktitle = { Advances in Neural Information Processing Systems } ,
year = { 2022 }
}
@inproceedings { Lin2023CommonDN ,
title = { Common Diffusion Noise Schedules and Sample Steps are Flawed } ,
author = { Shanchuan Lin and Bingchen Liu and Jiashi Li and Xiao Yang } ,
year = { 2023 }
}
@inproceedings { Chung2024CFGMC ,
title = { CFG++: Manifold-constrained Classifier Free Guidance for Diffusion Models } ,
author = { Hyungjin Chung and Jeongsol Kim and Geon Yeong Park and Hyelin Nam and Jong Chul Ye } ,
year = { 2024 } ,
url = { https://api.semanticscholar.org/CorpusID:270391454 }
}
@inproceedings { Sadat2024EliminatingOA ,
title = { Eliminating Oversaturation and Artifacts of High Guidance Scales in Diffusion Models } ,
author = { Seyedmorteza Sadat and Otmar Hilliges and Romann M. Weber } ,
year = { 2024 } ,
url = { https://api.semanticscholar.org/CorpusID:273098845 }
}