Implementierung von RETRO, dem Retrieval-basierten Aufmerksamkeitsnetz von Deepmind, in Pytorch. Dies weicht geringfügig vom Papier ab und verwendet rotierende Einbettungen für die relative Positionskodierung sowie die Faiss-Bibliothek anstelle von Scann.
Diese Bibliothek nutzt Autofaiss zum Erstellen des Index und zum Berechnen der k-nächsten Nachbarn für alle Chunks.
Erläuternder Blogbeitrag von Jay Alammar
Das Verkaufsargument dieses Retriever-Ansatzes ist das Erreichen der GPT-3-Leistung bei 10x weniger Parametern. In diesem Bereich bedarf es definitiv weiterer Forschung.
Ich habe auch die Funktionen hinzugefügt, die notwendig sind, um den Retrieval-Transformator auf 1000 Schichten zu skalieren, wenn man den Behauptungen des DeepNet-Papiers Glauben schenken darf.
Update: Jemand auf Reddit hat mir einen Gold Award geschenkt. Ich bin mir nicht sicher, was es ist, aber danke!
Update: Deepnorm wurde in einem 130B-Modell aus Tsinghua im großen Maßstab validiert. Es wird jetzt empfohlen, dass Sie beim Training mit use_deepnet
auf True
gesetzt sind
$ pip install retro-pytorch
import torch
from retro_pytorch import RETRO
retro = RETRO (
chunk_size = 64 , # the chunk size that is indexed and retrieved (needed for proper relative positions as well as causal chunked cross attention)
max_seq_len = 2048 , # max sequence length
enc_dim = 896 , # encoder model dim
enc_depth = 2 , # encoder depth
dec_dim = 796 , # decoder model dim
dec_depth = 12 , # decoder depth
dec_cross_attn_layers = ( 3 , 6 , 9 , 12 ), # decoder cross attention layers (with causal chunk cross attention)
heads = 8 , # attention heads
dim_head = 64 , # dimension per head
dec_attn_dropout = 0.25 , # decoder attention dropout
dec_ff_dropout = 0.25 , # decoder feedforward dropout
use_deepnet = True # turn on post-normalization with DeepNet residual scaling and initialization, for scaling to 1000 layers
)
seq = torch . randint ( 0 , 20000 , ( 2 , 2048 + 1 )) # plus one since it is split into input and labels for training
retrieved = torch . randint ( 0 , 20000 , ( 2 , 32 , 2 , 128 )) # retrieved tokens - (batch, num chunks, num retrieved neighbors, retrieved chunk with continuation)
loss = retro ( seq , retrieved , return_loss = True )
loss . backward ()
# do above for many steps
Das Ziel des TrainingWrapper
besteht darin, einen Ordner mit Textdokumenten in die erforderlichen gespeicherten Numpy-Arrays zu verarbeiten, um mit dem Training RETRO
zu beginnen.
import torch
from retro_pytorch import RETRO , TrainingWrapper
# instantiate RETRO, fit it into the TrainingWrapper with correct settings
retro = RETRO (
max_seq_len = 2048 , # max sequence length
enc_dim = 896 , # encoder model dimension
enc_depth = 3 , # encoder depth
dec_dim = 768 , # decoder model dimensions
dec_depth = 12 , # decoder depth
dec_cross_attn_layers = ( 1 , 3 , 6 , 9 ), # decoder cross attention layers (with causal chunk cross attention)
heads = 8 , # attention heads
dim_head = 64 , # dimension per head
dec_attn_dropout = 0.25 , # decoder attention dropout
dec_ff_dropout = 0.25 # decoder feedforward dropout
). cuda ()
wrapper = TrainingWrapper (
retro = retro , # path to retro instance
knn = 2 , # knn (2 in paper was sufficient)
chunk_size = 64 , # chunk size (64 in paper)
documents_path = './text_folder' , # path to folder of text
glob = '**/*.txt' , # text glob
chunks_memmap_path = './train.chunks.dat' , # path to chunks
seqs_memmap_path = './train.seq.dat' , # path to sequence data
doc_ids_memmap_path = './train.doc_ids.dat' , # path to document ids per chunk (used for filtering neighbors belonging to same document)
max_chunks = 1_000_000 , # maximum cap to chunks
max_seqs = 100_000 , # maximum seqs
knn_extra_neighbors = 100 , # num extra neighbors to fetch
max_index_memory_usage = '100m' ,
current_memory_available = '1G'
)
# get the dataloader and optimizer (AdamW with all the correct settings)
train_dl = iter ( wrapper . get_dataloader ( batch_size = 2 , shuffle = True ))
optim = wrapper . get_optimizer ( lr = 3e-4 , wd = 0.01 )
# now do your training
# ex. one gradient step
seq , retrieved = map ( lambda t : t . cuda (), next ( train_dl ))
# seq - (2, 2049) - 1 extra token since split by seq[:, :-1], seq[:, 1:]
# retrieved - (2, 32, 2, 128) - 128 since chunk + continuation, each 64 tokens
loss = retro (
seq ,
retrieved ,
return_loss = True
)
# one gradient step
loss . backward ()
optim . step ()
optim . zero_grad ()
# do above for many steps, then ...
# topk sampling with retrieval at chunk boundaries
sampled = wrapper . generate ( filter_thres = 0.9 , temperature = 1.0 ) # (1, <2049) terminates early if all <eos>
# or you can generate with a prompt, knn retrieval for initial chunks all taken care of
prompt = torch . randint ( 0 , 1000 , ( 1 , 128 )) # start with two chunks worth of sequence
sampled = wrapper . generate ( prompt , filter_thres = 0.9 , temperature = 1.0 ) # (1, <2049) terminates early if all <eos>
Wenn Sie eine erneute Verarbeitung der Trainingsdaten erzwingen möchten, führen Sie Ihr Skript einfach mit dem Umgebungsflag REPROCESS=1
aus
$ REPROCESS=1 python train.py
Die RETRODataset
Klasse akzeptiert Pfade zu einer Reihe von gespeicherten Numpy-Arrays, die die Blöcke, den Index des ersten Blocks in der zu trainierenden Sequenz (im RETRO-Decoder) und die vorberechneten Indizes der k-nächsten Nachbarn pro Block enthalten.
Damit können Sie ganz einfach die Daten für RETRO
-Training zusammenstellen, wenn Sie den TrainingWrapper
von oben nicht nutzen möchten.
Darüber hinaus finden Sie in den folgenden Abschnitten alle Funktionen, die zum Erstellen der erforderlichen gespeicherten Daten erforderlich sind.
import torch
from torch . utils . data import DataLoader
from retro_pytorch import RETRO , RETRODataset
# mock data constants
import numpy as np
NUM_CHUNKS = 1000
CHUNK_SIZE = 64
NUM_SEQS = 100
NUM_NEIGHBORS = 2
def save_memmap ( path , tensor ):
f = np . memmap ( path , dtype = tensor . dtype , mode = 'w+' , shape = tensor . shape )
f [:] = tensor
del f
# generate mock chunk data
save_memmap (
'./train.chunks.dat' ,
np . int32 ( np . random . randint ( 0 , 8192 , size = ( NUM_CHUNKS , CHUNK_SIZE + 1 )))
)
# generate nearest neighbors for each chunk
save_memmap (
'./train.chunks.knn.dat' ,
np . int32 ( np . random . randint ( 0 , 1000 , size = ( NUM_CHUNKS , NUM_NEIGHBORS )))
)
# generate seq data
save_memmap (
'./train.seq.dat' ,
np . int32 ( np . random . randint ( 0 , 128 , size = ( NUM_SEQS ,)))
)
# instantiate dataset class
# which constructs the sequence and neighbors from memmapped chunk and neighbor information
train_ds = RETRODataset (
num_sequences = NUM_SEQS ,
num_chunks = NUM_CHUNKS ,
num_neighbors = NUM_NEIGHBORS ,
chunk_size = CHUNK_SIZE ,
seq_len = 2048 ,
chunk_memmap_path = './train.chunks.dat' ,
chunk_nn_memmap_path = './train.chunks.knn.dat' ,
seq_memmap_path = './train.seq.dat'
)
train_dl = iter ( DataLoader ( train_ds , batch_size = 2 ))
# one forwards and backwards
retro = RETRO (
max_seq_len = 2048 , # max sequence length
enc_dim = 896 , # encoder model dimension
enc_depth = 3 , # encoder depth
dec_dim = 768 , # decoder model dimensions
dec_depth = 12 , # decoder depth
dec_cross_attn_layers = ( 1 , 3 , 6 , 9 ), # decoder cross attention layers (with causal chunk cross attention)
heads = 8 , # attention heads
dim_head = 64 , # dimension per head
dec_attn_dropout = 0.25 , # decoder attention dropout
dec_ff_dropout = 0.25 # decoder feedforward dropout
). cuda ()
seq , retrieved = map ( lambda t : t . cuda (), next ( train_dl ))
# seq - (2, 2049) - 1 extra token since split by seq[:, :-1], seq[:, 1:]
# retrieved - (2, 32, 2, 128) - 128 since chunk + continuation, each 64 tokens
loss = retro (
seq ,
retrieved ,
return_loss = True
)
loss . backward ()
Dieses Repository verwendet den Standard-Tokenizer (Sentencepiece) für die verpackte Version von BERT. Einbettungen werden vom Vanilla-BERT abgerufen und können entweder eine maskierte mittlere gepoolte Darstellung oder das CLS-Token sein.
ex. maskierte mittlere gepoolte Darstellung
from retro_pytorch . retrieval import bert_embed , tokenize
ids = tokenize ([
'hello world' ,
'foo bar'
])
embeds = bert_embed ( ids ) # (2, 768) - 768 is hidden dimension of BERT
ex. CLS-Token-Darstellung
from retro_pytorch . retrieval import bert_embed , tokenize
ids = tokenize ([
'hello world' ,
'foo bar'
])
embeds = bert_embed ( ids , return_cls_repr = True ) # (2, 768)
Erstellen Sie Ihre Chunks und Chunk-Startindizes (zur Berechnung von Sequenzbereichen für autoregressives Training) mit text_folder_to_chunks_
from retro_pytorch . retrieval import text_folder_to_chunks_
stats = text_folder_to_chunks_ (
folder = './text_folder' ,
glob = '**/*.txt' ,
chunks_memmap_path = './train.chunks.dat' ,
seqs_memmap_path = './train.seq.dat' ,
doc_ids_memmap_path = './train.doc_ids.dat' , # document ids are needed for filtering out neighbors belonging to same document appropriately during computation of nearest neighbors
chunk_size = 64 ,
seq_len = 2048 ,
max_chunks = 1_000_000 ,
max_seqs = 100_000
)
# {'chunks': <number of chunks>, 'docs': <number of documents>, 'seqs': <number of sequences>}
Sie können Ihr memmapped chunks numpy array mit einem Befehl in Einbettungen und einen Faiss-Index umwandeln
from retro_pytorch . retrieval import chunks_to_index_and_embed
index , embeddings = chunks_to_index_and_embed (
num_chunks = 1000 ,
chunk_size = 64 ,
chunk_memmap_path = './train.chunks.dat'
)
query_vector = embeddings [: 1 ] # use first embedding as query
_ , indices = index . search ( query_vector , k = 2 ) # fetch 2 neighbors, first indices should be self
neighbor_embeddings = embeddings [ indices ] # (1, 2, 768)
Mit dem Befehl chunks_to_precalculated_knn_
können Sie auch direkt die für das Training erforderliche nächstgelegene Nachbardatei berechnen
from retro_pytorch . retrieval import chunks_to_precalculated_knn_
chunks_to_precalculated_knn_ (
num_chunks = 1000 ,
chunk_size = 64 ,
chunk_memmap_path = './train.chunks.dat' , # path to main chunks dataset
doc_ids_memmap_path = './train.doc_ids.dat' , # path to document ids created by text_folder_to_chunks_, used for filtering out neighbors that belong to the same document
num_nearest_neighbors = 2 , # number of nearest neighbors you'd like to use
num_extra_neighbors = 10 # fetch 10 extra neighbors, in the case that fetched neighbors are frequently from same document (filtered out)
)
# nearest neighbor info saved to ./train.chunks.knn.dat
@misc { borgeaud2022improving ,
title = { Improving language models by retrieving from trillions of tokens } ,
author = { Sebastian Borgeaud and Arthur Mensch and Jordan Hoffmann and Trevor Cai and Eliza Rutherford and Katie Millican and George van den Driessche and Jean-Baptiste Lespiau and Bogdan Damoc and Aidan Clark and Diego de Las Casas and Aurelia Guy and Jacob Menick and Roman Ring and Tom Hennigan and Saffron Huang and Loren Maggiore and Chris Jones and Albin Cassirer and Andy Brock and Michela Paganini and Geoffrey Irving and Oriol Vinyals and Simon Osindero and Karen Simonyan and Jack W. Rae and Erich Elsen and Laurent Sifre } ,
year = { 2022 } ,
eprint = { 2112.04426 } ,
archivePrefix = { arXiv } ,
primaryClass = { cs.CL }
}
@misc { su2021roformer ,
title = { RoFormer: Enhanced Transformer with Rotary Position Embedding } ,
author = { Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu } ,
year = { 2021 } ,
eprint = { 2104.09864 } ,
archivePrefix = { arXiv } ,
primaryClass = { cs.CL }
}
@article { Wang2022DeepNetST ,
title = { DeepNet: Scaling Transformers to 1, 000 Layers } ,
author = { Hongyu Wang and Shuming Ma and Li Dong and Shaohan Huang and Dongdong Zhang and Furu Wei } ,
journal = { ArXiv } ,
year = { 2022 } ,
volume = { abs/2203.00555 }
}
@misc { zhang2021sparse ,
title = { Sparse Attention with Linear Units } ,
author = { Biao Zhang and Ivan Titov and Rico Sennrich } ,
year = { 2021 } ,
eprint = { 2104.07012 } ,
archivePrefix = { arXiv } ,
primaryClass = { cs.CL }
}
Ich betrachte das Erwachsenenleben immer als den kontinuierlichen Rückgriff auf die Kindheit. - Umberto Eco