** Es wurde ein Fehler bei der Nachbarauswahl bei vorhandener Maskierung entdeckt. Wenn Sie vor 0.1.12 Experimente durchgeführt haben, bei denen es zu Maskierungen kam, führen Sie diese bitte erneut durch. **
Implementierung von E(n)-äquivarianten graphischen neuronalen Netzen in Pytorch. Kann eventuell für die Alphafold2-Replikation verwendet werden. Diese Technik setzte auf einfache invariante Funktionen und übertraf letztendlich alle vorherigen Methoden (einschließlich SE3 Transformer und Lie Conv) sowohl hinsichtlich der Genauigkeit als auch der Leistung. SOTA in dynamischen Systemmodellen, Aufgaben zur Vorhersage molekularer Aktivität usw.
$ pip install egnn-pytorch
import torch
from egnn_pytorch import EGNN
layer1 = EGNN ( dim = 512 )
layer2 = EGNN ( dim = 512 )
feats = torch . randn ( 1 , 16 , 512 )
coors = torch . randn ( 1 , 16 , 3 )
feats , coors = layer1 ( feats , coors )
feats , coors = layer2 ( feats , coors ) # (1, 16, 512), (1, 16, 3)
Mit Kanten
import torch
from egnn_pytorch import EGNN
layer1 = EGNN ( dim = 512 , edge_dim = 4 )
layer2 = EGNN ( dim = 512 , edge_dim = 4 )
feats = torch . randn ( 1 , 16 , 512 )
coors = torch . randn ( 1 , 16 , 3 )
edges = torch . randn ( 1 , 16 , 16 , 4 )
feats , coors = layer1 ( feats , coors , edges )
feats , coors = layer2 ( feats , coors , edges ) # (1, 16, 512), (1, 16, 3)
Ein vollständiges EGNN-Netzwerk
import torch
from egnn_pytorch import EGNN_Network
net = EGNN_Network (
num_tokens = 21 ,
num_positions = 1024 , # unless what you are passing in is an unordered set, set this to the maximum sequence length
dim = 32 ,
depth = 3 ,
num_nearest_neighbors = 8 ,
coor_weights_clamp_value = 2. # absolute clamped value for the coordinate weights, needed if you increase the num neareest neighbors
)
feats = torch . randint ( 0 , 21 , ( 1 , 1024 )) # (1, 1024)
coors = torch . randn ( 1 , 1024 , 3 ) # (1, 1024, 3)
mask = torch . ones_like ( feats ). bool () # (1, 1024)
feats_out , coors_out = net ( feats , coors , mask = mask ) # (1, 1024, 32), (1, 1024, 3)
Kümmern Sie sich nur um spärliche Nachbarn, die dem Netzwerk als Adjazenzmatrix übergeben werden.
import torch
from egnn_pytorch import EGNN_Network
net = EGNN_Network (
num_tokens = 21 ,
dim = 32 ,
depth = 3 ,
only_sparse_neighbors = True
)
feats = torch . randint ( 0 , 21 , ( 1 , 1024 ))
coors = torch . randn ( 1 , 1024 , 3 )
mask = torch . ones_like ( feats ). bool ()
# naive adjacency matrix
# assuming the sequence is connected as a chain, with at most 2 neighbors - (1024, 1024)
i = torch . arange ( 1024 )
adj_mat = ( i [:, None ] >= ( i [ None , :] - 1 )) & ( i [:, None ] <= ( i [ None , :] + 1 ))
feats_out , coors_out = net ( feats , coors , mask = mask , adj_mat = adj_mat ) # (1, 1024, 32), (1, 1024, 3)
Sie können das Netzwerk auch automatisch die Nachbarn N-ter Ordnung bestimmen lassen und eine Adjazenzeinbettung (abhängig von der Reihenfolge) übergeben, die als Kante verwendet wird, mit zwei zusätzlichen Schlüsselwortargumenten
import torch
from egnn_pytorch import EGNN_Network
net = EGNN_Network (
num_tokens = 21 ,
dim = 32 ,
depth = 3 ,
num_adj_degrees = 3 , # fetch up to 3rd degree neighbors
adj_dim = 8 , # pass an adjacency degree embedding to the EGNN layer, to be used in the edge MLP
only_sparse_neighbors = True
)
feats = torch . randint ( 0 , 21 , ( 1 , 1024 ))
coors = torch . randn ( 1 , 1024 , 3 )
mask = torch . ones_like ( feats ). bool ()
# naive adjacency matrix
# assuming the sequence is connected as a chain, with at most 2 neighbors - (1024, 1024)
i = torch . arange ( 1024 )
adj_mat = ( i [:, None ] >= ( i [ None , :] - 1 )) & ( i [:, None ] <= ( i [ None , :] + 1 ))
feats_out , coors_out = net ( feats , coors , mask = mask , adj_mat = adj_mat ) # (1, 1024, 32), (1, 1024, 3)
Wenn Sie fortlaufende Kanten übergeben müssen
import torch
from egnn_pytorch import EGNN_Network
net = EGNN_Network (
num_tokens = 21 ,
dim = 32 ,
depth = 3 ,
edge_dim = 4 ,
num_nearest_neighbors = 3
)
feats = torch . randint ( 0 , 21 , ( 1 , 1024 ))
coors = torch . randn ( 1 , 1024 , 3 )
mask = torch . ones_like ( feats ). bool ()
continuous_edges = torch . randn ( 1 , 1024 , 1024 , 4 )
# naive adjacency matrix
# assuming the sequence is connected as a chain, with at most 2 neighbors - (1024, 1024)
i = torch . arange ( 1024 )
adj_mat = ( i [:, None ] >= ( i [ None , :] - 1 )) & ( i [:, None ] <= ( i [ None , :] + 1 ))
feats_out , coors_out = net ( feats , coors , edges = continuous_edges , mask = mask , adj_mat = adj_mat ) # (1, 1024, 32), (1, 1024, 3)
Die ursprüngliche Architektur für EGNN litt unter Instabilität, wenn es eine große Anzahl von Nachbarn gab. Zum Glück scheint es zwei Lösungen zu geben, die dieses Problem weitgehend abmildern.
import torch
from egnn_pytorch import EGNN_Network
net = EGNN_Network (
num_tokens = 21 ,
dim = 32 ,
depth = 3 ,
num_nearest_neighbors = 32 ,
norm_coors = True , # normalize the relative coordinates
coor_weights_clamp_value = 2. # absolute clamped value for the coordinate weights, needed if you increase the num neareest neighbors
)
feats = torch . randint ( 0 , 21 , ( 1 , 1024 )) # (1, 1024)
coors = torch . randn ( 1 , 1024 , 3 ) # (1, 1024, 3)
mask = torch . ones_like ( feats ). bool () # (1, 1024)
feats_out , coors_out = net ( feats , coors , mask = mask ) # (1, 1024, 32), (1, 1024, 3)
import torch
from egnn_pytorch import EGNN
model = EGNN (
dim = dim , # input dimension
edge_dim = 0 , # dimension of the edges, if exists, should be > 0
m_dim = 16 , # hidden model dimension
fourier_features = 0 , # number of fourier features for encoding of relative distance - defaults to none as in paper
num_nearest_neighbors = 0 , # cap the number of neighbors doing message passing by relative distance
dropout = 0.0 , # dropout
norm_feats = False , # whether to layernorm the features
norm_coors = False , # whether to normalize the coordinates, using a strategy from the SE(3) Transformers paper
update_feats = True , # whether to update features - you can build a layer that only updates one or the other
update_coors = True , # whether ot update coordinates
only_sparse_neighbors = False , # using this would only allow message passing along adjacent neighbors, using the adjacency matrix passed in
valid_radius = float ( 'inf' ), # the valid radius each node considers for message passing
m_pool_method = 'sum' , # whether to mean or sum pool for output node representation
soft_edges = False , # extra GLU on the edges, purportedly helps stabilize the network in updated version of the paper
coor_weights_clamp_value = None # clamping of the coordinate updates, again, for stabilization purposes
)
Um das Beispiel zur Rauschunterdrückung des Protein-Backbones auszuführen, installieren Sie zunächst sidechainnet
$ pip install sidechainnet
Dann
$ python denoise_sparse.py
Stellen Sie sicher, dass Pytorch Geometrisch lokal installiert ist
$ python setup.py test
@misc { satorras2021en ,
title = { E(n) Equivariant Graph Neural Networks } ,
author = { Victor Garcia Satorras and Emiel Hoogeboom and Max Welling } ,
year = { 2021 } ,
eprint = { 2102.09844 } ,
archivePrefix = { arXiv } ,
primaryClass = { cs.LG }
}