autoregressive diffusion pytorch
0.2.8
Implementierung der Architektur hinter der autoregressiven Bilderzeugung ohne Vektorquantisierung in Pytorch
Das offizielle Repository wurde hier veröffentlicht
Alternativroute
Oxford-Blumen in 96.000 Schritten
$ pip install autoregressive-diffusion-pytorch
import torch
from autoregressive_diffusion_pytorch import AutoregressiveDiffusion
model = AutoregressiveDiffusion (
dim_input = 512 ,
dim = 1024 ,
max_seq_len = 32 ,
depth = 8 ,
mlp_depth = 3 ,
mlp_width = 1024
)
seq = torch . randn ( 3 , 32 , 512 )
loss = model ( seq )
loss . backward ()
sampled = model . sample ( batch_size = 3 )
assert sampled . shape == seq . shape
Für Bilder, die als Folge von Token behandelt werden (wie in Papierform)
import torch
from autoregressive_diffusion_pytorch import ImageAutoregressiveDiffusion
model = ImageAutoregressiveDiffusion (
model = dict (
dim = 1024 ,
depth = 12 ,
heads = 12 ,
),
image_size = 64 ,
patch_size = 8
)
images = torch . randn ( 3 , 3 , 64 , 64 )
loss = model ( images )
loss . backward ()
sampled = model . sample ( batch_size = 3 )
assert sampled . shape == images . shape
Ein Bildtrainer
import torch
from autoregressive_diffusion_pytorch import (
ImageDataset ,
ImageAutoregressiveDiffusion ,
ImageTrainer
)
dataset = ImageDataset (
'/path/to/your/images' ,
image_size = 128
)
model = ImageAutoregressiveDiffusion (
model = dict (
dim = 512
),
image_size = 128 ,
patch_size = 16
)
trainer = ImageTrainer (
model = model ,
dataset = dataset
)
trainer ()
Für eine improvisierte Version mit Flow-Matching importieren Sie stattdessen einfach ImageAutoregressiveFlow
und AutoregressiveFlow
Der Rest ist derselbe
ex.
import torch
from autoregressive_diffusion_pytorch import (
ImageDataset ,
ImageTrainer ,
ImageAutoregressiveFlow ,
)
dataset = ImageDataset (
'/path/to/your/images' ,
image_size = 128
)
model = ImageAutoregressiveFlow (
model = dict (
dim = 512
),
image_size = 128 ,
patch_size = 16
)
trainer = ImageTrainer (
model = model ,
dataset = dataset
)
trainer ()
@article { Li2024AutoregressiveIG ,
title = { Autoregressive Image Generation without Vector Quantization } ,
author = { Tianhong Li and Yonglong Tian and He Li and Mingyang Deng and Kaiming He } ,
journal = { ArXiv } ,
year = { 2024 } ,
volume = { abs/2406.11838 } ,
url = { https://api.semanticscholar.org/CorpusID:270560593 }
}
@article { Wu2023ARDiffusionAD ,
title = { AR-Diffusion: Auto-Regressive Diffusion Model for Text Generation } ,
author = { Tong Wu and Zhihao Fan and Xiao Liu and Yeyun Gong and Yelong Shen and Jian Jiao and Haitao Zheng and Juntao Li and Zhongyu Wei and Jian Guo and Nan Duan and Weizhu Chen } ,
journal = { ArXiv } ,
year = { 2023 } ,
volume = { abs/2305.09515 } ,
url = { https://api.semanticscholar.org/CorpusID:258714669 }
}
@article { Karras2022ElucidatingTD ,
title = { Elucidating the Design Space of Diffusion-Based Generative Models } ,
author = { Tero Karras and Miika Aittala and Timo Aila and Samuli Laine } ,
journal = { ArXiv } ,
year = { 2022 } ,
volume = { abs/2206.00364 } ,
url = { https://api.semanticscholar.org/CorpusID:249240415 }
}
@article { Liu2022FlowSA ,
title = { Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow } ,
author = { Xingchao Liu and Chengyue Gong and Qiang Liu } ,
journal = { ArXiv } ,
year = { 2022 } ,
volume = { abs/2209.03003 } ,
url = { https://api.semanticscholar.org/CorpusID:252111177 }
}
@article { Esser2024ScalingRF ,
title = { Scaling Rectified Flow Transformers for High-Resolution Image Synthesis } ,
author = { Patrick Esser and Sumith Kulal and A. Blattmann and Rahim Entezari and Jonas Muller and Harry Saini and Yam Levi and Dominik Lorenz and Axel Sauer and Frederic Boesel and Dustin Podell and Tim Dockhorn and Zion English and Kyle Lacey and Alex Goodwin and Yannik Marek and Robin Rombach } ,
journal = { ArXiv } ,
year = { 2024 } ,
volume = { abs/2403.03206 } ,
url = { https://api.semanticscholar.org/CorpusID:268247980 }
}