FastEmbed is a lightweight, fast, Python library built for embedding generation. We support popular text models. Please open a GitHub issue if you want us to add a new model.
The default text embedding (TextEmbedding
) model is Flag Embedding, presented in the MTEB leaderboard. It supports "query" and "passage" prefixes for the input text. Here is an example for Retrieval Embedding Generation and how to use FastEmbed with Qdrant.
Light: FastEmbed is a lightweight library with few external dependencies. We don't require a GPU and don't download GBs of PyTorch dependencies, and instead use the ONNX Runtime. This makes it a great candidate for serverless runtimes like AWS Lambda.
Fast: FastEmbed is designed for speed. We use the ONNX Runtime, which is faster than PyTorch. We also use data parallelism for encoding large datasets.
Accurate: FastEmbed is better than OpenAI Ada-002. We also support an ever-expanding set of models, including a few multilingual models.
To install the FastEmbed library, pip works best. You can install it with or without GPU support:
pip install fastembed# or with GPU supportpip install fastembed-gpu
from fastembed import TextEmbeddingfrom typing import List# Example list of documentsdocuments: List[str] = [ "This is built to be faster and lighter than other embedding libraries e.g. Transformers, Sentence-Transformers, etc.", "fastembed is supported by and maintained by Qdrant.", ]# This will trigger the model download and initializationembedding_model = TextEmbedding()print("The model BAAI/bge-small-en-v1.5 is ready to use.")embeddings_generator = embedding_model.embed(documents) # reminder this is a generatorembeddings_list = list(embedding_model.embed(documents)) # you can also convert the generator to a list, and that to a numpy arraylen(embeddings_list[0]) # Vector of 384 dimensions
Fastembed supports a variety of models for different tasks and modalities. The list of all the available models can be found here
from fastembed import TextEmbeddingmodel = TextEmbedding(model_name="BAAI/bge-small-en-v1.5")embeddings = list(model.embed(documents))# [# array([-0.1115, 0.0097, 0.0052, 0.0195, ...], dtype=float32),# array([-0.1019, 0.0635, -0.0332, 0.0522, ...], dtype=float32)# ]
SPLADE++
from fastembed import SparseTextEmbeddingmodel = SparseTextEmbedding(model_name="prithivida/Splade_PP_en_v1")embeddings = list(model.embed(documents))# [# SparseEmbedding(indices=[ 17, 123, 919, ... ], values=[0.71, 0.22, 0.39, ...]),# SparseEmbedding(indices=[ 38, 12, 91, ... ], values=[0.11, 0.22, 0.39, ...])# ]
from fastembed import LateInteractionTextEmbeddingmodel = LateInteractionTextEmbedding(model_name="colbert-ir/colbertv2.0")embeddings = list(model.embed(documents))# [# array([# [-0.1115, 0.0097, 0.0052, 0.0195, ...],# [-0.1019, 0.0635, -0.0332, 0.0522, ...],# ]),# array([# [-0.9019, 0.0335, -0.0032, 0.0991, ...],# [-0.2115, 0.8097, 0.1052, 0.0195, ...],# ]), # ]
from fastembed import ImageEmbeddingimages = [ "./path/to/image1.jpg", "./path/to/image2.jpg", ]model = ImageEmbedding(model_name="Qdrant/clip-ViT-B-32-vision")embeddings = list(model.embed(images))# [# array([-0.1115, 0.0097, 0.0052, 0.0195, ...], dtype=float32),# array([-0.1019, 0.0635, -0.0332, 0.0522, ...], dtype=float32)# ]
FastEmbed supports running on GPU devices.
It requires installation of the fastembed-gpu
package.
pip install fastembed-gpu
Check our example for detailed instructions, CUDA 12.x support and troubleshooting of the common issues.
from fastembed import TextEmbeddingembedding_model = TextEmbedding( model_name="BAAI/bge-small-en-v1.5", providers=["CUDAExecutionProvider"] )print("The model BAAI/bge-small-en-v1.5 is ready to use on a GPU.")
Installation with Qdrant Client in Python:
pip install qdrant-client[fastembed]
or
pip install qdrant-client[fastembed-gpu]
You might have to use quotes pip install 'qdrant-client[fastembed]'
on zsh.
from qdrant_client import QdrantClient# Initialize the clientclient = QdrantClient("localhost", port=6333) # For production# client = QdrantClient(":memory:") # For small experiments# Prepare your documents, metadata, and IDsdocs = ["Qdrant has Langchain integrations", "Qdrant also has Llama Index integrations"]metadata = [ {"source": "Langchain-docs"}, {"source": "Llama-index-docs"}, ]ids = [42, 2]# If you want to change the model:# client.set_model("sentence-transformers/all-MiniLM-L6-v2")# List of supported models: https://qdrant.github.io/fastembed/examples/Supported_Models# Use the new add() instead of upsert()# This internally calls embed() of the configured embedding modelclient.add( collection_name="demo_collection", documents=docs, metadata=metadata, ids=ids)search_result = client.query( collection_name="demo_collection", query_text="This is a query document")print(search_result)