English | 简体中文 | 日本語 | 한국어
? What is RAGFlow?
? Demo
? Latest Updates
? Key Features
? System Architecture
? Get Started
? Configurations
? Build a docker image without embedding models
? Build a docker image including embedding models
? Launch service from source for development
? Documentation
? Roadmap
? Community
? Contributing
RAGFlow is an open-source RAG (Retrieval-Augmented Generation) engine based on deep document understanding. It offers a streamlined RAG workflow for businesses of any scale, combining LLM (Large Language Models) to provide truthful question-answering capabilities, backed by well-founded citations from various complex formatted data.
Try our demo at https://demo.ragflow.io.
2024-11-04 Upgrades DLA (Document Layout Analyze) models in deepdoc.
2024-11-01 Adds keyword extraction and related question generation to the parsed chunk to improve the accuracy of retrieval.
2024-09-13 Adds search mode for knowledge base Q&A.
2024-09-09 Adds a medical consultant agent template.
2024-08-22 Support text to SQL statements through RAG.
2024-08-02 Supports GraphRAG inspired by graphrag and mind map.
⭐️ Star our repository to stay up-to-date with exciting new features and improvements! Get instant notifications for new releases! ?
Deep document understanding-based knowledge extraction from unstructured data with complicated formats.
Finds "needle in a data haystack" of literally unlimited tokens.
Intelligent and explainable.
Plenty of template options to choose from.
Visualization of text chunking to allow human intervention.
Quick view of the key references and traceable citations to support grounded answers.
Supports Word, slides, excel, txt, images, scanned copies, structured data, web pages, and more.
Streamlined RAG orchestration catered to both personal and large businesses.
Configurable LLMs as well as embedding models.
Multiple recall paired with fused re-ranking.
Intuitive APIs for seamless integration with business.
CPU >= 4 cores
RAM >= 16 GB
Disk >= 50 GB
Docker >= 24.0.0 & Docker Compose >= v2.26.1
If you have not installed Docker on your local machine (Windows, Mac, or Linux), see Install Docker Engine.
Ensure vm.max_map_count
>= 262144:
To check the value of
vm.max_map_count
:$ sysctl vm.max_map_countReset
vm.max_map_count
to a value at least 262144 if it is not.# In this case, we set it to 262144:$ sudo sysctl -w vm.max_map_count=262144This change will be reset after a system reboot. To ensure your change remains permanent, add or update the
vm.max_map_count
value in /etc/sysctl.conf accordingly:vm.max_map_count=262144
Clone the repo:
$ git clone https://github.com/infiniflow/ragflow.git
Build the pre-built Docker images and start up the server:
The command below downloads the dev version Docker image for RAGFlow slim (
dev-slim
). Note that RAGFlow slim Docker images do not include embedding models or Python libraries and hence are approximately 1GB in size.
$ cd ragflow/docker $ docker compose -f docker-compose.yml up -d
NOTE: A RAGFlow Docker image that includes embedding models and Python libraries is approximately 9GB in size and may take significantly longer time to load.
To download a RAGFlow slim Docker image of a specific version, update the RAGFlow_IMAGE
variable in *docker/.env* to your desired version. For example, RAGFLOW_IMAGE=infiniflow/ragflow:v0.13.0-slim
. After
making this change, rerun the command above to initiate the download.
To download the dev version of RAGFlow Docker image including embedding models and Python libraries, update theRAGFlow_IMAGE
variable in docker/.env to RAGFLOW_IMAGE=infiniflow/ragflow:dev
. After making this change,
rerun the command above to initiate the download.
To download a specific version of RAGFlow Docker image including embedding models and Python libraries, update
the RAGFlow_IMAGE
variable in docker/.env to your desired version. For example,RAGFLOW_IMAGE=infiniflow/ragflow:v0.13.0
. After making this change, rerun the command above to initiate the
download.
Check the server status after having the server up and running:
$ docker logs -f ragflow-server
The following output confirms a successful launch of the system:
____ ___ ______ ______ __ / __ / | / ____// ____// /____ _ __ / /_/ // /| | / / __ / /_ / // __ | | /| / / / _, _// ___ |/ /_/ // __/ / // /_/ /| |/ |/ / /_/ |_|/_/ |_|____//_/ /_/ ____/ |__/|__/ * Running on all addresses (0.0.0.0) * Running on http://127.0.0.1:9380 * Running on http://x.x.x.x:9380 INFO:werkzeug:Press CTRL+C to quit
If you skip this confirmation step and directly log in to RAGFlow, your browser may prompt a
network abnormal
error because, at that moment, your RAGFlow may not be fully initialized.
In your web browser, enter the IP address of your server and log in to RAGFlow.
With the default settings, you only need to enter
http://IP_OF_YOUR_MACHINE
(sans port number) as the default HTTP serving port80
can be omitted when using the default configurations.
In service_conf.yaml, select the desired LLM factory in user_default_llm
and update
the API_KEY
field with the corresponding API key.
See llm_api_key_setup for more information.
The show is on!
When it comes to system configurations, you will need to manage the following files:
.env: Keeps the fundamental setups for the system, such as SVR_HTTP_PORT
, MYSQL_PASSWORD
, andMINIO_PASSWORD
.
service_conf.yaml: Configures the back-end services.
docker-compose.yml: The system relies on docker-compose.yml to start up.
You must ensure that changes to the .env file are in line with what are in the service_conf.yaml file.
The ./docker/README file provides a detailed description of the environment settings and service configurations, and you are REQUIRED to ensure that all environment settings listed in the ./docker/README file are aligned with the corresponding configurations in the service_conf.yaml file.
To update the default HTTP serving port (80), go to docker-compose.yml and change 80:80
to <YOUR_SERVING_PORT>:80
.
Updates to the above configurations require a reboot of all containers to take effect:
$ docker compose -f docker/docker-compose.yml up -d
This image is approximately 1 GB in size and relies on external LLM and embedding services.
git clone https://github.com/infiniflow/ragflow.gitcd ragflow/ pip3 install huggingface-hub nltk python3 download_deps.py docker build -f Dockerfile.slim -t infiniflow/ragflow:dev-slim .
This image is approximately 9 GB in size. As it includes embedding models, it relies on external LLM services only.
git clone https://github.com/infiniflow/ragflow.gitcd ragflow/ pip3 install huggingface-hub nltk python3 download_deps.py docker build -f Dockerfile -t infiniflow/ragflow:dev .
Install Poetry, or skip this step if it is already installed:
curl -sSL https://install.python-poetry.org | python3 -
Clone the source code and install Python dependencies:
git clone https://github.com/infiniflow/ragflow.gitcd ragflow/export POETRY_VIRTUALENVS_CREATE=true POETRY_VIRTUALENVS_IN_PROJECT=true~/.local/bin/poetry install --sync --no-root # install RAGFlow dependent python modules
Launch the dependent services (MinIO, Elasticsearch, Redis, and MySQL) using Docker Compose:
docker compose -f docker/docker-compose-base.yml up -d
Add the following line to /etc/hosts
to resolve all hosts specified in docker/service_conf.yaml to 127.0.0.1
:
127.0.0.1 es01 mysql minio redis
In docker/service_conf.yaml, update mysql port to 5455
and es port to 1200
, as specified in docker/.env.
If you cannot access HuggingFace, set the HF_ENDPOINT
environment variable to use a mirror site:
export HF_ENDPOINT=https://hf-mirror.com
Launch backend service:
source .venv/bin/activateexport PYTHONPATH=$(pwd)bash docker/launch_backend_service.sh
Install frontend dependencies:
cd web npm install --force
Configure frontend to update proxy.target
in .umirc.ts to http://127.0.0.1:9380
:
Launch frontend service:
npm run dev
The following output confirms a successful launch of the system:
Quickstart
User guide
References
FAQ
See the RAGFlow Roadmap 2024
Discord
GitHub Discussions
RAGFlow flourishes via open-source collaboration. In this spirit, we embrace diverse contributions from the community. If you would like to be a part, review our Contribution Guidelines first.