VCD: Mitigating Object Hallucinations in Large Vision-Language Models through Visual Contrastive Decoding
Sicong Leng, Hang Zhang, Guanzheng Chen, Xin Li, Shijian Lu, Chunyan Miao, Lidong Bing
VideoLLaMA 2: Advancing Spatial-Temporal Modeling and Audio Understanding in Video-LLMs
Zesen Cheng, Sicong Leng, Hang Zhang, Yifei Xin, Xin Li, Guanzheng Chen, Yongxin Zhu, Wenqi Zhang, Ziyang Luo, Deli Zhao, Lidong Bing
The Curse of Multi-Modalities: Evaluating Hallucinations of Large Multimodal Models across Language, Visual, and Audio
Sicong Leng, Yun Xing, Zesen Cheng, Yang Zhou, Hang Zhang, Xin Li, Deli Zhao, Shijian Lu, Chunyan Miao, Lidong Bing
[2024.10.18] Release training and evaluation codes of Inf-CLIP.
Basic Dependencies:
Python >= 3.8
Pytorch >= 2.0.0
CUDA Version >= 11.8
[Remote] Install Inf-CL:
# remote installingpip install inf_cl -i https://pypi.org/simple
[Local] Install Inf-CL:
pip install -e .
Install required packages:
git clone https://github.com/DAMO-NLP-SG/Inf-CLIPcd Inf-CLIP pip install -r requirements.txt
inf_cl
is the triton implementation of Inf-CL loss:
Ring-CL (inf_cl/ring.py#L238)
Inf-CL (inf_cl/ring.py#L251)
inf_clip
is the CLIP training codebase with Inf-CL loss and other training features:
Gradient Accumulation (inf_clip/train/train.py#L180)
Gradient Cache (inf_clip/train/train.py#L292)
A simple example about how to adopt our Inf-CL loss for contrastive learning. Using such command for attempting:
torchrun --nproc_per_node 2 tests/example.py
import torchimport torch.nn.functional as Fimport torch.distributed as distimport numpy as npfrom inf_cl import cal_inf_lossdef create_cl_tensors(rank, world_size):# Parametersdtype = torch.float32num_heads = 3 # Number of attention headsseq_length_q = 32768 # Sequence lengthseq_length_k = 32768d_model = 256 # Dimension of each head (must be 16, 32, 64, or 128)# Randomly initialize inputsq = torch.rand((seq_length_q // world_size, num_heads * d_model), dtype=dtype, device=f"cuda:{rank}")k = torch.rand((seq_length_k // world_size, num_heads * d_model), dtype=dtype, device=f"cuda:{rank}")l = torch.ones([], dtype=dtype, device=f"cuda:{rank}") * np.log(1 / 0.07)q = F.normalize(q, p=2, dim=-1).requires_grad_() # Queryk = F.normalize(k, p=2, dim=-1).requires_grad_() # Keyl = l.requires_grad_() # Logit scalereturn q, k, lif __name__ == "__main__":# Assume that the distributed environment has been initializeddist.init_process_group("nccl")rank = dist.get_rank()world_size = dist.get_world_size()torch.cuda.set_device(rank)# Exampled by Image-Text Contrastive Learning, q is the global image features, # k is the text features, and l is the logit scale.q, k, l = create_cl_tensors(rank, world_size)# labels are diagonal elements by default. # labels = torch.arange(q.shape[0])loss = cal_inf_loss(q, k, scale=l.exp())print(loss)
* denotes adopting "data offload" strategy.
Training with larger data scale needs larger batch size.
To facilitate further development on top of our codebase, we provide a quick-start guide on how to use Inf-CLIP to train a customized CLIP and evaluate the trained model on the mainstream clip benchmarks.
Training Data Structure:
Inf-CLIP ├── datasets │ ├── cc3m/ # https://github.com/rom1504/img2dataset/blob/main/dataset_examples/cc3m.md| | ├── 0000.tar| | ├── 0001.tar| | ├── ...| | └── 0301.tar │ ├── cc12m/ # https://github.com/rom1504/img2dataset/blob/main/dataset_examples/cc12m.md| | ├── 0000.tar| | ├── 0001.tar| | ├── ...| | └── 1044.tar │ ├── laion400m/ # https://github.com/rom1504/img2dataset/blob/main/dataset_examples/laion400m.md| | ├── 00000.tar| | ├── 00001.tar| | ├── ...| | └── 41407.tar
Command:
bash scripts/cc3m/lit_vit-b-32_bs16k.sh bash scripts/cc12m/lit_vit-b-32_bs32k.sh bash scripts/laion400m/lit_vit-b-32_bs256k.sh
Evaluation Data Structure:
Inf-CLIP ├── datasets │ ├── imagenet-1k/ # download val_images.tar.gz of imagenet| | └── val/| | | ├── n01440764| | | ├── n01443537| | | ├── ...| | | └── n15075141 │ ├── clip-benchmark/ # bash datasets/benchmarks_download.sh| | ├── wds_mscoco_captions| | ├── wds_flickr8k| | ├── wds_flickr30k| | ├── wds_imagenet1k| | ├── wds_imagenetv2| | ├── wds_imagenet_sketch| | ├── wds_imagenet-a| | ├── wds_imagenet-r| | ├── wds_imagenet-o| | └── wds_objectnet
Command:
# imagenet evaluationbash scripts/imagenet_eval.sh# overall evaluationbash scripts/benchmarks_eval.sh
If you find Inf-CLIP useful for your research and applications, please cite using this BibTeX:
@article{damovl2024infcl, title={Breaking the Memory Barrier: Near Infinite Batch Size Scaling for Contrastive Loss}, author={Zesen Cheng, Hang Zhang, Kehan Li, Sicong Leng, Zhiqiang Hu, Fei Wu, Deli Zhao, Xin Li, Lidong Bing}, journal={arXiv preprint arXiv:2410.17243}, year={2024}, url={https://arxiv.org/abs/2410.12787}}
The codebase of Inf-CLIP is adapted from OpenCLIP. We are also grateful for the following projects our Inf-CL arose from:
OpenAI CLIP, img2dataset, CLIP-Benchmark.
FlashAttention, RingAttention, RingFlashAttention.
This project is released under the Apache 2.0 license as found in the LICENSE file. The service is a research preview intended for non-commercial use ONLY, subject to the model Licenses of CLIP, Terms of Use of the data generated by OpenAI, and Laion. Please get in touch with us if you find any potential violations.