spatialdata workshops
20241022: BIOINFO 2024, Gyeongju (South Korea)
We'll be using conda
or mamba
(faster) as a package manager here, depending on what is installed on the teaching . This allows to set up the entire environment with a single command.
create the conda environment from the environment.yaml
file
# it's recommended to use mamba for faster installation, or set libmamba as the default solver
# conda config --set solver libmamba
conda env create -f environment.yaml -y
# alternatively, if you already have a conda environment you'd like to use, you can update it like this
conda env update --name myenv --file environment.yaml --prune
activate the environment
conda activate spatialdata-workshop
register the conda environment in Jupyter
python -m ipykernel install --user --name spatialdata-workshop --display-name "Python (SpatialData Workshop)"
Optionally: Set up auto-completion inside of Jupter Notebooks
pip install jupyter_tabnine
jupyter contrib nbextension install --user
jupyter nbextension install --py jupyter_tabnine --user
jupyter nbextension enable --py jupyter_tabnine --user
jupyter serverextension enable --py jupyter_tabnine --user
If at any point you modify the environment.yaml
and want to update the environment, you can do this with
conda env update --name spatialdata-workshop --file environment.yaml --prune
conda activate spatialdata-workshop
# download the raw data
python download.py --data_dir data raw visium
python download.py --data_dir data raw visium_hd
python download.py --data_dir data raw xenium
# download some already processed data
python download.py --data_dir data zarr merfish
Notes on the data:
conda activate spatialdata-workshop
jupyter-lab
Here you can find a list of our past workshops, including the respective notebooks and slides.