The Qualcomm® AI Hub Models are a collection of state-of-the-art machine learning models optimized for deployment on Qualcomm® devices.
See supported: On-Device Runtimes, Hardware Targets & Precision, Chipsets, Devices
The package is available via pip:
# NOTE for Snapdragon X Elite users:
# Only AMDx64 (64-bit) Python in supported on Windows.
# Installation will fail when using Windows ARM64 Python.
pip install qai_hub_models
Some models (e.g. YOLOv7) require additional dependencies that can be installed as follows:
pip install "qai_hub_models[yolov7]"
Many features of AI Hub Models (such as model compilation, on-device profiling, etc.) require access to Qualcomm® AI Hub:
qai-hub configure --api_token API_TOKEN
All models in our directory can be compiled and profiled on a hosted Qualcomm® device:
pip install "qai_hub_models[yolov7]"
python -m qai_hub_models.models.yolov7.export [--target-runtime ...] [--device ...] [--help]
Using Qualcomm® AI Hub, the export script will:
Most models in our directory contain CLI demos that run the model end-to-end:
pip install "qai_hub_models[yolov7]"
# Predict and draw bounding boxes on the provided image
python -m qai_hub_models.models.yolov7.demo [--image ...] [--on-device] [--help]
End-to-end demos:
Many end-to-end demos use AI Hub to run inference on a real cloud-hosted device (if the --on-device
flag is set). All end-to-end demos also run locally via PyTorch.
Native applications that can run our models (with pre- and post-processing) on physical devices are published in the AI Hub Apps repository.
Python applications are defined for all models (from qai_hub_models.models.<model_name> import App). These apps wrap model inference with pre- and post-processing steps written using torch & numpy. These apps are optimized to be an easy-to-follow example, rather than to minimize prediction time.
Runtime | Supported OS |
---|---|
Qualcomm AI Engine Direct | Android, Linux, Windows |
LiteRT (TensorFlow Lite) | Android, Linux |
ONNX | Android, Linux, Windows |
Device Compute Unit | Supported Precision |
---|---|
CPU | FP32, INT16, INT8 |
GPU | FP32, FP16 |
NPU (includes Hexagon DSP, HTP) | FP16*, INT16, INT8 |
*Some older chipsets do not support fp16 inference on their NPU.
and many more.
and many more.
Model | README |
---|---|
Image Classification | |
ConvNext-Tiny | qai_hub_models.models.convnext_tiny |
ConvNext-Tiny-w8a16-Quantized | qai_hub_models.models.convnext_tiny_w8a16_quantized |
ConvNext-Tiny-w8a8-Quantized | qai_hub_models.models.convnext_tiny_w8a8_quantized |
DenseNet-121 | qai_hub_models.models.densenet121 |
DenseNet-121-Quantized | qai_hub_models.models.densenet121_quantized |
EfficientNet-B0 | qai_hub_models.models.efficientnet_b0 |
EfficientNet-B4 | qai_hub_models.models.efficientnet_b4 |
EfficientViT-b2-cls | qai_hub_models.models.efficientvit_b2_cls |
EfficientViT-l2-cls | qai_hub_models.models.efficientvit_l2_cls |
GoogLeNet | qai_hub_models.models.googlenet |
GoogLeNetQuantized | qai_hub_models.models.googlenet_quantized |
Inception-v3 | qai_hub_models.models.inception_v3 |
Inception-v3-Quantized | qai_hub_models.models.inception_v3_quantized |
MNASNet05 | qai_hub_models.models.mnasnet05 |
MobileNet-v2 | qai_hub_models.models.mobilenet_v2 |
MobileNet-v2-Quantized | qai_hub_models.models.mobilenet_v2_quantized |
MobileNet-v3-Large | qai_hub_models.models.mobilenet_v3_large |
MobileNet-v3-Large-Quantized | qai_hub_models.models.mobilenet_v3_large_quantized |
MobileNet-v3-Small | qai_hub_models.models.mobilenet_v3_small |
RegNet | qai_hub_models.models.regnet |
RegNetQuantized | qai_hub_models.models.regnet_quantized |
ResNeXt101 | qai_hub_models.models.resnext101 |
ResNeXt101Quantized | qai_hub_models.models.resnext101_quantized |
ResNeXt50 | qai_hub_models.models.resnext50 |
ResNeXt50Quantized | qai_hub_models.models.resnext50_quantized |
ResNet101 | qai_hub_models.models.resnet101 |
ResNet101Quantized | qai_hub_models.models.resnet101_quantized |
ResNet18 | qai_hub_models.models.resnet18 |
ResNet18Quantized | qai_hub_models.models.resnet18_quantized |
ResNet50 | qai_hub_models.models.resnet50 |
ResNet50Quantized | qai_hub_models.models.resnet50_quantized |
Shufflenet-v2 | qai_hub_models.models.shufflenet_v2 |
Shufflenet-v2Quantized | qai_hub_models.models.shufflenet_v2_quantized |
SqueezeNet-1_1 | qai_hub_models.models.squeezenet1_1 |
SqueezeNet-1_1Quantized | qai_hub_models.models.squeezenet1_1_quantized |
Swin-Base | qai_hub_models.models.swin_base |
Swin-Small | qai_hub_models.models.swin_small |
Swin-Tiny | qai_hub_models.models.swin_tiny |
VIT | qai_hub_models.models.vit |
VITQuantized | qai_hub_models.models.vit_quantized |
WideResNet50 | qai_hub_models.models.wideresnet50 |
WideResNet50-Quantized | qai_hub_models.models.wideresnet50_quantized |
Image Editing | |
AOT-GAN | qai_hub_models.models.aotgan |
LaMa-Dilated | qai_hub_models.models.lama_dilated |
Super Resolution | |
ESRGAN | qai_hub_models.models.esrgan |
QuickSRNetLarge | qai_hub_models.models.quicksrnetlarge |
QuickSRNetLarge-Quantized | qai_hub_models.models.quicksrnetlarge_quantized |
QuickSRNetMedium | qai_hub_models.models.quicksrnetmedium |
QuickSRNetMedium-Quantized | qai_hub_models.models.quicksrnetmedium_quantized |
QuickSRNetSmall | qai_hub_models.models.quicksrnetsmall |
QuickSRNetSmall-Quantized | qai_hub_models.models.quicksrnetsmall_quantized |
Real-ESRGAN-General-x4v3 | qai_hub_models.models.real_esrgan_general_x4v3 |
Real-ESRGAN-x4plus | qai_hub_models.models.real_esrgan_x4plus |
SESR-M5 | qai_hub_models.models.sesr_m5 |
SESR-M5-Quantized | qai_hub_models.models.sesr_m5_quantized |
XLSR | qai_hub_models.models.xlsr |
XLSR-Quantized | qai_hub_models.models.xlsr_quantized |
Semantic Segmentation | |
DDRNet23-Slim | qai_hub_models.models.ddrnet23_slim |
DeepLabV3-Plus-MobileNet | qai_hub_models.models.deeplabv3_plus_mobilenet |
DeepLabV3-Plus-MobileNet-Quantized | qai_hub_models.models.deeplabv3_plus_mobilenet_quantized |
DeepLabV3-ResNet50 | qai_hub_models.models.deeplabv3_resnet50 |
FCN-ResNet50 | qai_hub_models.models.fcn_resnet50 |
FCN-ResNet50-Quantized | qai_hub_models.models.fcn_resnet50_quantized |
FFNet-122NS-LowRes | qai_hub_models.models.ffnet_122ns_lowres |
FFNet-40S | qai_hub_models.models.ffnet_40s |
FFNet-40S-Quantized | qai_hub_models.models.ffnet_40s_quantized |
FFNet-54S | qai_hub_models.models.ffnet_54s |
FFNet-54S-Quantized | qai_hub_models.models.ffnet_54s_quantized |
FFNet-78S | qai_hub_models.models.ffnet_78s |
FFNet-78S-LowRes | qai_hub_models.models.ffnet_78s_lowres |
FFNet-78S-Quantized | qai_hub_models.models.ffnet_78s_quantized |
FastSam-S | qai_hub_models.models.fastsam_s |
FastSam-X | qai_hub_models.models.fastsam_x |
MediaPipe-Selfie-Segmentation | qai_hub_models.models.mediapipe_selfie |
SINet | qai_hub_models.models.sinet |
Segment-Anything-Model | qai_hub_models.models.sam |
Unet-Segmentation | qai_hub_models.models.unet_segmentation |
YOLOv8-Segmentation | qai_hub_models.models.yolov8_seg |
Object Detection | |
DETR-ResNet101 | qai_hub_models.models.detr_resnet101 |
DETR-ResNet101-DC5 | qai_hub_models.models.detr_resnet101_dc5 |
DETR-ResNet50 | qai_hub_models.models.detr_resnet50 |
DETR-ResNet50-DC5 | qai_hub_models.models.detr_resnet50_dc5 |
FaceAttribNet | qai_hub_models.models.face_attrib_net |
Lightweight-Face-Detection | qai_hub_models.models.face_det_lite |
MediaPipe-Face-Detection | qai_hub_models.models.mediapipe_face |
MediaPipe-Face-Detection-Quantized | qai_hub_models.models.mediapipe_face_quantized |
MediaPipe-Hand-Detection | qai_hub_models.models.mediapipe_hand |
PPE-Detection | qai_hub_models.models.gear_guard_net |
PPE-Detection-Quantized | qai_hub_models.models.gear_guard_net_quantized |
Person-Foot-Detection | qai_hub_models.models.foot_track_net |
Person-Foot-Detection-Quantized | qai_hub_models.models.foot_track_net_quantized |
YOLOv11-Detection | qai_hub_models.models.yolov11_det |
YOLOv8-Detection | qai_hub_models.models.yolov8_det |
YOLOv8-Detection-Quantized | qai_hub_models.models.yolov8_det_quantized |
Yolo-NAS | qai_hub_models.models.yolonas |
Yolo-NAS-Quantized | qai_hub_models.models.yolonas_quantized |
Yolo-v6 | qai_hub_models.models.yolov6 |
Yolo-v7 | qai_hub_models.models.yolov7 |
Yolo-v7-Quantized | qai_hub_models.models.yolov7_quantized |
Pose Estimation | |
Facial-Landmark-Detection | qai_hub_models.models.facemap_3dmm |
HRNetPose | qai_hub_models.models.hrnet_pose |
HRNetPoseQuantized | qai_hub_models.models.hrnet_pose_quantized |
LiteHRNet | qai_hub_models.models.litehrnet |
MediaPipe-Pose-Estimation | qai_hub_models.models.mediapipe_pose |
OpenPose | qai_hub_models.models.openpose |
Posenet-Mobilenet | qai_hub_models.models.posenet_mobilenet |
Posenet-Mobilenet-Quantized | qai_hub_models.models.posenet_mobilenet_quantized |
Depth Estimation | |
Midas-V2 | qai_hub_models.models.midas |
Midas-V2-Quantized | qai_hub_models.models.midas_quantized |
Model | README |
---|---|
Speech Recognition | |
HuggingFace-WavLM-Base-Plus | qai_hub_models.models.huggingface_wavlm_base_plus |
Whisper-Base-En | qai_hub_models.models.whisper_base_en |
Whisper-Small-En | qai_hub_models.models.whisper_small_en |
Whisper-Tiny-En | qai_hub_models.models.whisper_tiny_en |
Model | README |
---|---|
OpenAI-Clip | qai_hub_models.models.openai_clip |
TrOCR | qai_hub_models.models.trocr |
Model | README |
---|---|
Image Generation | |
ControlNet | qai_hub_models.models.controlnet_quantized |
Riffusion | qai_hub_models.models.riffusion_quantized |
Stable-Diffusion-v1.5 | qai_hub_models.models.stable_diffusion_v1_5_quantized |
Stable-Diffusion-v2.1 | qai_hub_models.models.stable_diffusion_v2_1_quantized |
Text Generation | |
Baichuan2-7B | qai_hub_models.models.baichuan2_7b_quantized |
IBM-Granite-3B-Code-Instruct | qai_hub_models.models.ibm_granite_3b_code_instruct |
IndusQ-1.1B | qai_hub_models.models.indus_1b_quantized |
JAIS-6p7b-Chat | qai_hub_models.models.jais_6p7b_chat_quantized |
Llama-v2-7B-Chat | qai_hub_models.models.llama_v2_7b_chat_quantized |
Llama-v3-8B-Chat | qai_hub_models.models.llama_v3_8b_chat_quantized |
Llama-v3.1-8B-Chat | qai_hub_models.models.llama_v3_1_8b_chat_quantized |
Llama-v3.2-3B-Chat | qai_hub_models.models.llama_v3_2_3b_chat_quantized |
Mistral-3B | qai_hub_models.models.mistral_3b_quantized |
Mistral-7B-Instruct-v0.3 | qai_hub_models.models.mistral_7b_instruct_v0_3_quantized |
PLaMo-1B | qai_hub_models.models.plamo_1b_quantized |
Qwen2-7B-Instruct | qai_hub_models.models.qwen2_7b_instruct_quantized |
Slack: https://aihub.qualcomm.com/community/slack
GitHub Issues: https://github.com/quic/ai-hub-models/issues
Email: [email protected].
Qualcomm® AI Hub Models is licensed under BSD-3. See the LICENSE file.