This repository contains the community-maintained library for OpenAI's API in java, the easiest way to use GPT 3/4 in your applications.
This Java library (community-maintained Library) provides a convenient way to interact with OpenAI's API for both Moderation and Chat Completion. The library encapsulates the necessary details, making it easy to integrate OpenAI's powerful models into your Java applications. This project is not maintained by OPENAI, this is an unofficial library.
Please refer CONTRIBUTING.md
All "OPENAI_KEYS" must be read through the readKeys() function defined here, this function allows you to read multiple keys at the same time, and for multithreaded task it is adviced to use multiple keys to avoid rate limiting. To run this function you need to have keys.txt in your project root folder (feel free to edit).
To use the Chat Completion API, follow these steps:
Message message = Message.builder()
.role("user")
.content("what is the capital of Cambodia?")
.build();
List<Message> messages = new ArrayList<>();
messages.add(message);
ChatCompletionRequest request = ChatCompletionRequest.builder()
.model("gpt-3.5-turbo")
.messages(messages)
.build();
ChatCompletionResponse response = new EasyopenaiService(new DAOImpl()).chatCompletion("OPENAI_KEY",request);
Click here to jump to the code example.
To use the Moderation API, follow these steps:
ModerationAPIRequest request = ModerationAPIRequest.builder()
.model("text-moderation-latest")
.input("hello from the other side kill me now")
.build();
ModerationAPIResponse res = new EasyopenaiService(new DAOImpl()).getmoderation("OPENAI_KEY",request);
Click here to jump to the code example.
Vision API can be used like this, feel free to add N number of images in list of Images-
VisionApiResponse responseobj = new EasyVisionService().VisionAPI("OPENAI_KEY", new EasyVisionRequest()
.setModel("gpt-4-vision-preview")
.setPrompt("What are the difference between these images?")
.setImageUrls(new ArrayList<String>() {{
add("https://images.pexels.com/photos/268533/pexels-photo-268533.jpeg?auto=compress&cs=tinysrgb&w=1260&h=750&dpr=1");
add("https://images.pexels.com/photos/36717/amazing-animal-beautiful-beautifull.jpg?auto=compress&cs=tinysrgb&w=1260&h=750&dpr=1");
}}));
.setMaxtokens(1000) //Optional - for more tokens, defaults to 300
Click here to jump to the code example.
To use the Vision API, follow these steps:
EasyopenaiService obj = new EasyopenaiService(new DAOImpl());
VisionApiRequest request = new VisionApiRequest();
ImageUrl url = new ImageUrl();
url.setUrl("https://images.pexels.com/photos/18907092/pexels-photo-18907092/free-photo-of-a-photo-of-the-golden-gate-bridge-in-the-sky.jpeg");
url.setDetail("low");
Content content1 = new Content();
content1.setText("What’s in this image?");
content1.setType("text");
Content content2 = new Content();
content2.setImageUrl(url);
content2.setType("image_url");
ArrayList<Content> listofContent = new ArrayList<>();
listofContent.add(content1);
listofContent.add(content2);
MessageList messageList = new MessageList();
messageList.setRole("user");
messageList.setContent(listofContent);
ArrayList<MessageList> listofMessage = new ArrayList<>();
listofMessage.add(messageList);
request.setModel("gpt-4-vision-preview");
request.setMaxTokens(300);
request.setMessages(listofMessage);
VisionApiResponse res = obj.visionAPI(OPENAI_KEY, request);
System.out.println("Vision API Response is:" + res);
Click here to jump to the code example.
Speech API can be used like this, feel free to tweak-
SpeechRequest request = SpeechRequest.builder()
.model("tts-1")
.input("Easy OpenAI is best solution.")
.voice("alloy")
.build();
ResponseBody response = new EasyopenaiService(new DAOImpl()).createSpeech("OPENAI_KEY",request);
Click here to jump to the code example.
Transcription API can be used like this, feel free to tweak-
EasyTranscriptionRequest request = EasyTranscriptionRequest.builder()
.filepath("/Users/namankhurpia/Desktop/audio.mp3")
.model("whisper-1")
.build();
ResponseBody response = new EasyTranscriptionService().EasyTranscription("OPENAI_KEY", request);
Click here to jump to the code example.
Transcription API can be used like this, feel free to tweak-
File audioFile = new File("/Users/namankhurpia/Desktop/audio.mp3");
MultipartBody.Part filePart = MultipartBody.Part.createFormData(
"file",
audioFile.getName(),
RequestBody.create(MediaType.parse("audio/*"), audioFile)
);
RequestBody model = RequestBody.create(MediaType.parse("text/plain"), "whisper-1");
RequestBody language = RequestBody.create(MediaType.parse("text/plain"), "");
RequestBody prompt = RequestBody.create(MediaType.parse("text/plain"), "");
RequestBody response_format = RequestBody.create(MediaType.parse("text/plain"), "");
RequestBody temperature = RequestBody.create(MediaType.parse("text/plain"), "");
ResponseBody response = new EasyopenaiService(new DAOImpl()).createTranscriptions("OPENAI_KEY", filePart,model, language,prompt,response_format,temperature);
Click here to jump to the code example.
Image Generation API can be used like this, feel free to tweak-
ImageRequest imageRequest = ImageRequest.builder()
.prompt("Generate a cute dog playing with frizbee")
.model("dall-e-2")
.build();
ImageResponse response = new EasyopenaiService(new DAOImpl()).createImage("OPENAI_KEY",imageRequest);
Click here to jump to the code example.
To use the Chat Completion API asynchronously, follow these steps:
Initialize the EasyopenaiAsyncService
object with an instance of AsyncDAOImpl
:
EasyopenaiAsyncService obj = new EasyopenaiAsyncService(new AsyncDAOImpl());
Create a list of ChatMessage
objects to represent the conversation:
ChatMessage message = new ChatMessage();
message.setRole("user");
message.setContent("what is the capital of Cambodia?");
List<ChatMessage> messages = new ArrayList<>();
messages.add(message);
Create a ChatCompletionRequest
object:
ChatCompletionRequest request = new ChatCompletionRequest();
request.setModel("gpt-3.5-turbo");
request.setMessages(messages); // old conversations as well
Make the asynchronous API call:
ChatCompletionResponse res = obj.getAsyncChatCompletion(OPENAI_KEY, request);
Click here to jump to the code example.
To use the Moderation API asynchronously, follow these steps:
Create a ModerationAPIRequest
object:
ModerationAPIRequest request = new ModerationAPIRequest();
request.setInput("kill me now");
request.setModel("text-moderation-latest");
Initialize the EasyopenaiAsyncService
object with an instance of AsyncDAOImpl
:
EasyopenaiAsyncService obj = new EasyopenaiAsyncService(new AsyncDAOImpl());
Make the asynchronous API call:
ModerationAPIResponse res = obj.getASyncModeration(OPENAI_KEY, request);
Click here to jump to the code example.
For multi-threading and concurrent calls with Chat Completion API, follow these steps:
Create a ChatCompletionRequestList
object:
ChatCompletionRequestList list = new ChatCompletionRequestList(new ArrayList<ChatCompletionRequest>());
Add multiple ChatCompletionRequest
objects to the list:
// Example request 1
ChatCompletionRequest requestchat = new ChatCompletionRequest();
requestchat.setModel("gpt-3.5-turbo");
ChatMessage message = new ChatMessage();
message.setRole("user");
message.setContent("what is the capital of India?");
List<ChatMessage> messages = new ArrayList<>();
messages.add(message);
requestchat.setMessages(messages);
list.add(requestchat);
// Add more requests as needed (requestchat2, requestchat3, requestchat4, etc.)
Make the multi-asynchronous API call:
EasyopenaiConcurrentService concurrentCalls = new EasyopenaiConcurrentService();
ChatCompletionResponseList responseList = concurrentCalls.CallMultipleChatCompletionAPI(OPENAI_KEY, list);
System.out.println(responseList);
Click here to jump to the code example.
For multi-threading and concurrent calls with the Moderation API, follow these steps:
Create a ModerationRequestList
object:
ModerationRequestList requestList = new ModerationRequestList(new ArrayList<ModerationAPIRequest>());
Add multiple ModerationAPIRequest
objects to the list:
// Example request 1
ModerationAPIRequest request = new ModerationAPIRequest();
request.setInput("kill me now");
request.setModel("text-moderation-latest");
requestList.add(request);
// Add more requests as needed (request2, request3, request4, etc.)
Make the multi-asynchronous API call:
EasyopenaiConcurrentService concurrentCalls = new EasyopenaiConcurrentService();
ModerationResponseList responseList = concurrentCalls.CallMultipleModerationAPI(OPENAI_KEY, requestList);
System.out.println(responseList);
Click here to jump to the code example.
This allows you to make multiple Chat completion calls with multiple keys. All API calls are executed parallely but the response is actively collected and sent back when all the threads are finished.
CompletableFuture class has been used for implementation. Kindly refer EasyopenaiConcurrentService.java file to see the source.
Example Usgage-
public static void CallMultipleChatCompletionAPI_multikey_Test()
{
//this function read multiple keys from keys.txt file
ArrayList<String> keyList = readKeys();
EasyopenaiConcurrentService concurrentCalls = new EasyopenaiConcurrentService();
ChatCompletionRequestList list = new ChatCompletionRequestList(new ArrayList<ChatCompletionRequest>());
//First thread for
ChatCompletionRequest requestchat = new ChatCompletionRequest();
requestchat.setModel("gpt-3.5-turbo");
Message message = new Message();
message.setRole("user");
message.setContent("what is the capital of India?");
List<Message> messages = new ArrayList<>();
messages.add(message);
requestchat.setMessages(messages);
list.add(requestchat);
ChatCompletionRequest requestchat2 = new ChatCompletionRequest();
requestchat2.setModel("gpt-3.5-turbo");
Message message2 = new Message();
message2.setRole("user");
message2.setContent("what is the capital of combodia?");
List<Message> messages2 = new ArrayList<>();
messages2.add(message2);
requestchat2.setMessages(messages2);
list.add(requestchat2);
ChatCompletionRequest requestchat3 = new ChatCompletionRequest();
requestchat3.setModel("gpt-3.5-turbo");
Message message3 = new Message();
message3.setRole("user");
message3.setContent("what is the capital of new zealand?");
List<Message> messages3 = new ArrayList<>();
messages3.add(message3);
requestchat3.setMessages(messages3);
list.add(requestchat3);
ChatCompletionRequest requestchat4 = new ChatCompletionRequest();
requestchat4.setModel("gpt-3.5-turbo");
Message message4 = new Message();
message4.setRole("user");
message4.setContent("what is the capital of hawaii? and what is 2+2?");
List<Message> messages4 = new ArrayList<>();
messages4.add(message4);
requestchat4.setMessages(messages4);
list.add(requestchat4);
ChatCompletionResponseList responseList = concurrentCalls.CallMultipleChatCompletionAPI(keyList, list);
System.out.println("response is"+responseList);
}
Ensure you have the required dependencies installed before using the OpenAI API wrapper.
<dependency>
<groupId>io.github.namankhurpia</groupId>
<artifactId>easyopenai</artifactId>
<version>x.x.x</version>
</dependency>
implementation group: 'io.github.namankhurpia', name: 'easyopenai', version: 'x.x.x'
implementation 'io.github.namankhurpia:easyopenai:x.x.x'
implementation("io.github.namankhurpia:easyopenai:x.x.x")
libraryDependencies += "io.github.namankhurpia" % "easyopenai" % "x.x.x"
<dependency org="io.github.namankhurpia" name="easyopenai" rev="x.x.x"/>
@Grapes(
@Grab(group='io.github.namankhurpia', module='easyopenai', version='x.x.x')
)
[io.github.namankhurpia/easyopenai "x.x.x"]
'io.github.namankhurpia:easyopenai:jar:x.x.x'