amazon personalize langchain extensions
1.0.0
This repo provides a set of utility classes to work with Langchain. It currently has a utility class AmazonPersonalize
for working with a Amazon Personalize campaign/recommender and AmazonPersonalizeChain
custom chain build to retrieve recommendations from Amazon Personalize and execute a default prompt (which can be overriden by the user).
Clone the repository
git clone https://github.com/aws-samples/amazon-personalize-langchain-extensions.git
Move to the repo dir
cd amazon-personalize-langchain-extensions
Install the classes
pip install .
from aws_langchain import AmazonPersonalize
recommender_arn="<insert_arn>"
client=AmazonPersonalize(credentials_profile_name="default",region_name="us-west-2",recommender_arn=recommender_arn)
client.get_recommendations(user_id="1")
from aws_langchain import AmazonPersonalize
from aws_langchain import AmazonPersonalizeChain
from langchain.llms.bedrock import Bedrock
recommender_arn="<insert_arn>"
bedrock_llm = Bedrock(model_id="anthropic.claude-v2", region_name="us-west-2")
client=AmazonPersonalize(credentials_profile_name="default",region_name="us-west-2",recommender_arn=recommender_arn)
# Create personalize chain
# Use return_direct=True if you do not want summary
chain = AmazonPersonalizeChain.from_llm(
llm=bedrock_llm,
client=client,
return_direct=False
)
response = chain({'user_id': '1'})
print(response)
from langchain.prompts.prompt import PromptTemplate
from aws_langchain import AmazonPersonalize
from aws_langchain import AmazonPersonalizeChain
from langchain.llms.bedrock import Bedrock
RANDOM_PROMPT_QUERY="""
You are a skilled publicist. Write a high-converting marketing email advertising several movies available in a video-on-demand streaming platform next week,
given the movie and user information below. Your email will leverage the power of storytelling and persuasive language.
The movies to recommend and their information is contained in the <movie> tag.
All movies in the <movie> tag must be recommended. Give a summary of the movies and why the human should watch them.
Put the email between <email> tags.
<movie>
{result}
</movie>
Assistant:
"""
RANDOM_PROMPT = PromptTemplate(input_variables=["result"], template=RANDOM_PROMPT_QUERY)
recommender_arn="<insert_arn>"
bedrock_llm = Bedrock(model_id="anthropic.claude-v2", region_name="us-west-2")
client=AmazonPersonalize(credentials_profile_name="default",region_name="us-west-2",recommender_arn=recommender_arn)
chain=AmazonPersonalizeChain.from_llm(llm=bedrock_llm, client=client, return_direct=False, prompt_template=RANDOM_PROMPT)
chain.run({'user_id':'1', 'item_id':'234'})
from langchain.chains import SequentialChain
from langchain.chains import LLMChain
from aws_langchain import AmazonPersonalize
from aws_langchain import AmazonPersonalizeChain
from langchain.llms.bedrock import Bedrock
from langchain.prompts.prompt import PromptTemplate
RANDOM_PROMPT_QUERY_2="""
You are a skilled publicist. Write a high-converting marketing email advertising several movies available in a video-on-demand streaming platform next week,
given the movie and user information below. Your email will leverage the power of storytelling and persuasive language.
You want the email to impress the user, so make it appealing to them.
The movies to recommend and their information is contained in the <movie> tag.
All movies in the <movie> tag must be recommended. Give a summary of the movies and why the human should watch them.
Put the email between <email> tags.
<movie>
{result}
</movie>
Assistant:
"""
recommender_arn="<insert_arn>"
bedrock_llm = Bedrock(model_id="anthropic.claude-v2", region_name="us-west-2")
client=AmazonPersonalize(credentials_profile_name="default",region_name="us-west-2",recommender_arn=recommender_arn)
RANDOM_PROMPT_2 = PromptTemplate(input_variables=["result"], template=RANDOM_PROMPT_QUERY_2)
personalize_chain_instance=AmazonPersonalizeChain.from_llm(llm=bedrock_llm, client=client, return_direct=True)
random_chain_instance = LLMChain(llm=bedrock_llm, prompt=RANDOM_PROMPT_2)
overall_chain = SequentialChain(chains=[personalize_chain_instance, random_chain_instance], input_variables=["user_id"], verbose=True)
overall_chain.run({'user_id':'1', 'item_id':'234'})
from aws_langchain import AmazonPersonalize
from aws_langchain import AmazonPersonalizeChain
from langchain.llms.bedrock import Bedrock
recommender_arn="<insert_arn>"
metadata_column_list = ["METADATA_COL1"]
metadataMap = {"ITEMS": metadata_column_list}
bedrock_llm = Bedrock(model_id="anthropic.claude-v2", region_name="us-west-2")
client=AmazonPersonalize(credentials_profile_name="default",region_name="us-west-2",recommender_arn=recommender_arn)
# Create personalize chain
# Use return_direct=True if you do not want summary
chain = AmazonPersonalizeChain.from_llm(
llm=bedrock_llm,
client=client,
return_direct=False
)
response = chain({'user_id': '1', 'metadata_columns': metadataMap})
print(response)
pip uninstall aws-langchain
Create your GitHub branch and make a pull request. See CONTRIBUTING for more information.
This library is licensed under the MIT-0 License. See the LICENSE file.