Provides scripts to generate random process trees and simulate these trees into event logs.
Detailed information on the workings of the generator and simulator can be found in the paper: Jouck, Toon, and Benoît Depaire. “PTandLogGenerator: A Generator for Artificial Event Data.” In Proceedings of the BPM Demo Track 2016 (BPMD 2016), 1789:23–27. Rio de Janeiro: CEUR workshop proceedings, 2016. http://ceur-ws.org/Vol-1789/.
Input: parameter file for populations (example parameter file located in the '/data/parameter_files' folder).
Each line of the csv-file characterizes one population:
mode;min;max;sequence;choice;parallel;loop;or;silent;duplicate;lt_dependency;infrequent;no_models;unfold;max_repeat
Output: collection of process trees in the 'data/trees' folder:
Usage: callable from command line:
$python generate_newick_trees.py [-h] [--t [timeout]] [--g [graphviz]] input
Generate process trees from input population.
positional arguments:
input: input csv-formatted file in which the population parameters are specified, example: ../data/parameter_files/example_parameters.csv
optional arguments:
-h, --help : show this help message and exit
--t abort tree generation after timeout seconds, default=10000
--g indicate whether to render graphviz image of tree, default=False
Input:
Output: event log in XES format (default) or csv-file format 'case_id', 'act_name'[,'start_time','end_time']
Usage: callable from command line
call plugin: $python generate_logs.py [-h] [--i [input_folder]] [--t [timestamps]] [--f [format]] size noise
Simulate event logs from process trees.
positional arguments:
size: number of traces to simulate
noise: probability to insert noise into trace
optional arguments:
-h, --help : show this help message and exit
--i [input_folder] : specify the relative address to the trees folder, default=../data/trees/
--t [timestamps] : indicate whether to include timestamps or not, default=False
--f [format] : indicate which format to use for the log: xes or csv, default=xes
*Output: a sample of event logs with case attributes
*Usage: run the generate_data_trees_and_logs.py and adapt the parameters