This document provides information about FernFlower, a Java decompiler, and Mitsuba 3, a research-oriented rendering system. FernFlower details include its functionality, licensing, command-line usage, and options for renaming identifiers. Mitsuba 3's description covers its features, installation, usage, and contributors. Both sections offer comprehensive explanations and examples.
About FernFlower
FernFlower is the first actually working analytical decompiler for Java and
probably for a high-level programming language in general. Naturally it is still
under development, please send your bug reports and improvement suggestions to the
issue tracker.
FernFlower and ForgeFlower
FernFlower includes some patches from ForgeFlower.
Sincere appreciation is extended to the maintainers of ForgeFlower for their valuable contributions and enhancements.
Licence
FernFlower is licenced under the Apache Licence Version 2.0.
Running from command line
java -jar fernflower.jar [-
=
]* [
]+
means 0 or more times
means 1 or more times
: file or directory with files to be decompiled. Directories are recursively scanned. Allowed file extensions are class, zip and jar.
Sources prefixed with -e= mean "library" files that won't be decompiled, but taken into account when analysing relationships between
classes or methods. Especially renaming of identifiers (s. option 'ren') can benefit from information about external classes.
: destination directory
,
: a command-line option with the corresponding value (see "Command-line options" below).
Examples:
java -jar fernflower.jar -hes=0 -hdc=0 c:Tempbinary -e=c:Javart.jar c:Tempsource
java -jar fernflower.jar -dgs=1 c:Tempbinarylibrary.jar c:TempbinaryBoot.class c:Tempsource
Command-line options
With the exception of mpm and urc the value of 1 means the option is activated, 0 - deactivated. Default
value, if any, is given between parentheses.
Typically, the following options will be changed by user, if any: hes, hdc, dgs, mpm, ren, urc
The rest of options can be left as they are: they are aimed at professional reverse engineers.
Renaming identifiers
Some obfuscators give classes and their member elements short, meaningless and above all ambiguous names. Recompiling of such
code leads to a great number of conflicts. Therefore it is advisable to let the decompiler rename elements in its turn,
ensuring uniqueness of each identifier.
Option 'ren' (i.e. -ren=1) activates renaming functionality. Default renaming strategy goes as follows:
The meaning of each method should be clear from naming: toBeRenamed determine whether the element will be renamed, while the other three
provide new names for classes, methods and fields respectively.
example:
Mitsuba Renderer 3
Documentation
|
Tutorial videos
|
Linux
|
MacOS
|
Windows
|
PyPI
|
---|---|---|---|---|---|
️
Warning
️
There currently is a large amount of undocumented and unstable work going on in
the master
branch. We'd highly recommend you use our
latest release
until further notice.
If you already want to try out the upcoming changes, please have a look at
this porting guide.
It should cover most of the new features and breaking changes that are coming.
Introduction
Mitsuba 3 is a research-oriented rendering system for forward and inverse light
transport simulation developed at EPFL in Switzerland.
It consists of a core library and a set of plugins that implement functionality
ranging from materials and light sources to complete rendering algorithms.
Mitsuba 3 is retargetable: this means that the underlying implementations and
data structures can transform to accomplish various different tasks. For
example, the same code can simulate both scalar (classic one-ray-at-a-time) RGB transport
or differential spectral transport on the GPU. This all builds on
Dr.Jit, a specialized just-in-time(JIT) compiler developed specifically for this project.
Main Features
Cross-platform: Mitsuba 3 has been tested on Linux (x86_64
), macOS
(aarch64
, x8664
), and Windows (x8664
).
High performance: The underlying Dr.Jit compiler fuses rendering code
into kernels that achieve state-of-the-art performance using
an LLVM backend targeting the CPU and a CUDA/OptiX backend
targeting NVIDIA GPUs with ray tracing hardware acceleration.
Python first: Mitsuba 3 is deeply integrated with Python. Materials,
textures, and even full rendering algorithms can be developed in Python,
which the system JIT-compiles (and optionally differentiates) on the fly.
This enables the experimentation needed for research in computer graphics and
other disciplines.
Differentiation: Mitsuba 3 is a differentiable renderer, meaning that it
can compute derivatives of the entire simulation with respect to input
parameters such as camera pose, geometry, BSDFs, textures, and volumes. It
implements recent differentiable rendering algorithms developed at EPFL.
Spectral & Polarization: Mitsuba 3 can be used as a monochromatic
renderer, RGB-based renderer, or spectral renderer. Each variant can
optionally account for the effects of polarization if desired.
Tutorial videos, documentation
We've recorded several YouTube videos that provide a gentle introduction
Mitsuba 3 and Dr.Jit. Beyond this you can find complete Juypter notebooks
covering a variety of applications, how-to guides, and reference documentation
on readthedocs.
Installation
We provide pre-compiled binary wheels via PyPI. Installing Mitsuba this way is as simple as running
pip install mitsuba
on the command line. The Python package includes thirteen variants by default:
scalar_rgb
scalar_spectral
scalarspectralpolarized
llvmadrgb
llvmadmono
llvmadmono_polarized
llvmadspectral
llvmadspectral_polarized
cudaadrgb
cudaadmono
cudaadmono_polarized
cudaadspectral
cudaadspectral_polarized
The first two perform classic one-ray-at-a-time simulation using either a RGB
or spectral color representation, while the latter two can be used for inverse
rendering on the CPU or GPU. To access additional variants, you will need to
compile a custom version of Dr.Jit using CMake. Please see the
documentation
for details on this.
Requirements
Python >= 3.8
(optional) For computation on the GPU: Nvidia driver >= 495.89
(optional) For vectorized / parallel computation on the CPU: LLVM >= 11.1
Usage
Here is a simple "Hello World" example that shows how simple it is to render a
scene using Mitsuba 3 from Python:
# Import the library using the alias "mi"import mitsuba as mi# Set the variant of the renderermi.setvariant('scalarrgb')# Load a scenescene = mi.loaddict(mi.cornellbox())# Render the sceneimg = mi.render(scene)# Write the rendered image to an EXR filemi.Bitmap(img).write('cbox.exr')
Tutorials and example notebooks covering a variety of applications can be found
in the documentation.
About
This project was created by Wenzel Jakob.
Significant features and/or improvements to the code were contributed by
Sébastien Speierer,
Nicolas Roussel,
Merlin Nimier-David,
Delio Vicini,
Tizian Zeltner,
Baptiste Nicolet,
Miguel Crespo,
Vincent Leroy, and
Ziyi Zhang.
When using Mitsuba 3 in academic projects, please cite:
@software{Mitsuba3,title = {Mitsuba 3 renderer},author = {Wenzel Jakob and Sébastien Speierer and Nicolas Roussel and Merlin Nimier-David and Delio Vicini and Tizian Zeltner and Baptiste Nicolet and Miguel Crespo and Vincent Leroy and Ziyi Zhang},note = {https://mitsuba-renderer.org},version = {3.1.1},year = 2022}