Lists of all AI related learning materials and practical tools to get started with AI apps
Self-Paced Labs
AWS self-paced labs provide hands-on practice in a live AWS environment with AWS services and real-world cloud scenarios. Follow step-by-step instructions to learn a service, practice a use case, or prepare for AWS Certification.
Introductory Lab
Lex
Polly
Rekognition
Machine Learning
Machine Learning
Session 1 – Empowering Developers to Build Smart Applications
Session 2 - Predicting Customer Churn with Amazon Machine Learning
AWS Machine Learning – End to end, managed service for creating and testing ML models and then deploying those models into production
Documentation
AWS Deep Learning AMI – Amazon Machine Image (AMI) optimized for deep learning efforts
Recommended Additional Resources
Take your skills to the next level with fundamental, advanced, and expert level labs.
Below is the learning material that will help you learn about Google Cloud.
Network
The codelab provides common cloud developer experience as follows:
Developing Solutions for Google Cloud Platform – 8 hours
Infrastructure
Data
AI, Big Data & Machine Learning
Additional AI Materials
(Optional) Deep Learning & Tensorflow
Additional Reference Material
(Contributions are welcome in this space)
Visual Studio
UCI datasets
Skills Prerequisite
Training Paths
If you have the above Prerequisite skills, then take Advanced Training Path else take Novice Training Path.
Prerequisite Tutorials
Environment Set Up
Cognitive Services (Defining Intelligence)
Bot Framework (Building Chat Bots)
Environment Set Up
Cognitive Services (Defining Intelligence)
Bot Framework (Building Chat Bots)
Cognitive Services (Defining Intelligence) - Labs
Bot Framework (Building Chat Bots) – Labs
Source Berkeley
Lecture Title | Lecturer | Semester | |
Lecture 1 | Introduction | Dan Klein | Fall 2012 |
Lecture 2 | Uninformed Search | Dan Klein | Fall 2012 |
Lecture 3 | Informed Search | Dan Klein | Fall 2012 |
Lecture 4 | Constraint Satisfaction Problems I | Dan Klein | Fall 2012 |
Lecture 5 | Constraint Satisfaction Problems II | Dan Klein | Fall 2012 |
Lecture 6 | Adversarial Search | Dan Klein | Fall 2012 |
Lecture 7 | Expectimax and Utilities | Dan Klein | Fall 2012 |
Lecture 8 | Markov Decision Processes I | Dan Klein | Fall 2012 |
Lecture 9 | Markov Decision Processes II | Dan Klein | Fall 2012 |
Lecture 10 | Reinforcement Learning I | Dan Klein | Fall 2012 |
Lecture 11 | Reinforcement Learning II | Dan Klein | Fall 2012 |
Lecture 12 | Probability | Pieter Abbeel | Spring 2014 |
Lecture 13 | Markov Models | Pieter Abbeel | Spring 2014 |
Lecture 14 | Hidden Markov Models | Dan Klein | Fall 2013 |
Lecture 15 | Applications of HMMs / Speech | Pieter Abbeel | Spring 2014 |
Lecture 16 | Bayes' Nets: Representation | Pieter Abbeel | Spring 2014 |
Lecture 17 | Bayes' Nets: Independence | Pieter Abbeel | Spring 2014 |
Lecture 18 | Bayes' Nets: Inference | Pieter Abbeel | Spring 2014 |
Lecture 19 | Bayes' Nets: Sampling | Pieter Abbeel | Fall 2013 |
Lecture 20 | Decision Diagrams / Value of Perfect Information | Pieter Abbeel | Spring 2014 |
Lecture 21 | Machine Learning: Naive Bayes | Nicholas Hay | Spring 2014 |
Lecture 22 | Machine Learning: Perceptrons | Pieter Abbeel | Spring 2014 |
Lecture 23 | Machine Learning: Kernels and Clustering | Pieter Abbeel | Spring 2014 |
Lecture 24 | Advanced Applications: NLP, Games, and Robotic Cars | Pieter Abbeel | Spring 2014 |
Lecture 25 | Advanced Applications: Computer Vision and Robotics | Pieter Abbeel | Spring 2014 |
Additionally, there are additional Step-By-Step videos which supplement the lecture's materials. These videos are listed below:
Lecture Title | Lecturer | Notes | |
SBS-1 | DFS and BFS | Pieter Abbeel | Lec: Uninformed Search |
SBS-2 | A* Search | Pieter Abbeel | Lec: Informed Search |
SBS-3 | Alpha-Beta Pruning | Pieter Abbeel | Lec: Adversarial Search |
SBS-4 | D-Separation | Pieter Abbeel | Lec: Bayes' Nets: Independence |
SBS-5 | Elimination of One Variable | Pieter Abbeel | Lec: Bayes' Nets: Inference |
SBS-6 | Variable Elimination | Pieter Abbeel | Lec: Bayes' Nets: Inference |
SBS-7 | Sampling | Pieter Abbeel | Lec: Bayes' Nets: Sampling |
SBS-8 | Maximum Likelihood | Pieter Abbeel | Lec: Machine Learning: Naive Bayes |
SBS-9 | Laplace Smoothing | Pieter Abbeel | Lec: Machine Learning: Naive Bayes |
SBS-10 | Perceptrons | Pieter Abbeel | Lec: Machine Learning: Perceptrons |
The lecture videos from the most recent offerings are posted below.
Spring 2014 Lecture Videos
Fall 2013 Lecture Videos
Spring 2013 Lecture Videos
Fall 2012 Lecture Videos
Lecture Title | Lecturer | Notes | |
Lecture 1 | Introduction | Pieter Abbeel | |
Lecture 2 | Uninformed Search | Pieter Abbeel | |
Lecture 3 | Informed Search | Pieter Abbeel | |
Lecture 4 | Constraint Satisfaction Problems I | Pieter Abbeel | Recording is a bit flaky, see Fall 2013 Lecture 4 for alternative |
Lecture 5 | Constraint Satisfaction Problems II | Pieter Abbeel | |
Lecture 6 | Adversarial Search | Pieter Abbeel | |
Lecture 7 | Expectimax and Utilities | Pieter Abbeel | |
Lecture 8 | Markov Decision Processes I | Pieter Abbeel | |
Lecture 9 | Markov Decision Processes II | Pieter Abbeel | |
Lecture 10 | Reinforcement Learning I | Pieter Abbeel | |
Lecture 11 | Reinforcement Learning II | Pieter Abbeel | |
Lecture 12 | Probability | Pieter Abbeel | |
Lecture 13 | Markov Models | Pieter Abbeel | |
Lecture 14 | Hidden Markov Models | Pieter Abbeel | Recording is a bit flaky, see Fall 2013 Lecture 18 for alternative |
Lecture 15 | Applications of HMMs / Speech | Pieter Abbeel | |
Lecture 16 | Bayes' Nets: Representation | Pieter Abbeel | |
Lecture 17 | Bayes' Nets: Independence | Pieter Abbeel | |
Lecture 18 | Bayes' Nets: Inference | Pieter Abbeel | |
Lecture 19 | Bayes' Nets: Sampling | Pieter Abbeel | Unrecorded, see Fall 2013 Lecture 16 |
Lecture 20 | Decision Diagrams / Value of Perfect Information | Pieter Abbeel | |
Lecture 21 | Machine Learning: Naive Bayes | Nicholas Hay | |
Lecture 22 | Machine Learning: Perceptrons | Pieter Abbeel | |
Lecture 23 | Machine Learning: Kernels and Clustering | Pieter Abbeel | |
Lecture 24 | Advanced Applications: NLP, Games, and Robotic Cars | Pieter Abbeel | |
Lecture 25 | Advanced Applications: Computer Vision and Robotics | Pieter Abbeel | |
Lecture 26 | Conclusion | Pieter Abbeel | Unrecorded |
Lecture Title | Lecturer | Notes | |
Lecture 1 | Introduction | Dan Klein | |
Lecture 2 | Uninformed Search | Dan Klein | |
Lecture 3 | Informed Search | Dan Klein | |
Lecture 4 | Constraint Satisfaction Problems I | Dan Klein | |
Lecture 5 | Constraint Satisfaction Problems II | Dan Klein | |
Lecture 6 | Adversarial Search | Dan Klein | |
Lecture 7 | Expectimax and Utilities | Dan Klein | |
Lecture 8 | Markov Decision Processes I | Dan Klein | |
Lecture 9 | Markov Decision Processes II | Dan Klein | |
Lecture 10 | Reinforcement Learning I | Dan Klein | |
Lecture 11 | Reinforcement Learning II | Dan Klein | |
Lecture 12 | Probability | Pieter Abbeel | |
Lecture 13 | Bayes' Nets: Representation | Pieter Abbeel | |
Lecture 14 | Bayes' Nets: Independence | Dan Klein | |
Lecture 15 | Bayes' Nets: Inference | Pieter Abbeel | |
Lecture 16 | Bayes' Nets: Sampling | Pieter Abbeel | |
Lecture 17 | Decision Diagrams / Value of Perfect Information | Pieter Abbeel | |
Lecture 18 | Hidden Markov Models | Dan Klein | |
Lecture 19 | Applications of HMMs / Speech | Dan Klein | |
Lecture 20 | Machine Learning: Naive Bayes | Dan Klein | |
Lecture 21 | Machine Learning: Perceptrons | Dan Klein | |
Lecture 22 | Machine Learning: Kernels and Clustering | Pieter Abbeel | |
Lecture 23 | Machine Learning: Decision Trees and Neural Nets | Pieter Abbeel | |
Lecture 24 | Advanced Applications: NLP and Robotic Cars | Dan Klein | Unrecorded, see Spring 2013 Lecture 24 |
Lecture 25 | Advanced Applications: Computer Vision and Robotics | Pieter Abbeel | |
Lecture 26 | Conclusion | Dan Klein, Pieter Abbeel |
Unrecorded |
Lecture Title | Lecturer | Notes | |
Lecture 1 | Introduction | Pieter Abbeel | Video Down |
Lecture 2 | Uninformed Search | Pieter Abbeel | |
Lecture 3 | Informed Search | Pieter Abbeel | |
Lecture 4 | Constraint Satisfaction Problems I | Pieter Abbeel | |
Lecture 5 | Constraint Satisfaction Problems II | Pieter Abbeel | Unrecorded, see Fall 2012 Lecture 5 |
Lecture 6 | Adversarial Search | Pieter Abbeel | |
Lecture 7 | Expectimax and Utilities | Pieter Abbeel | |
Lecture 8 | Markov Decision Processes I | Pieter Abbeel | |
Lecture 9 | Markov Decision Processes II | Pieter Abbeel | |
Lecture 10 | Reinforcement Learning I | Pieter Abbeel | |
Lecture 11 | Reinforcement Learning II | Pieter Abbeel | |
Lecture 12 | Probability | Pieter Abbeel | |
Lecture 13 | Bayes' Nets: Representation | Pieter Abbeel | |
Lecture 14 | Bayes' Nets: Independence | Pieter Abbeel | |
Lecture 15 | Bayes' Nets: Inference | Pieter Abbeel | |
Lecture 16 | Bayes' Nets: Sampling | Pieter Abbeel | |
Lecture 17 | Decision Diagrams / Value of Perfect Information | Pieter Abbeel | |
Lecture 18 | Hidden Markov Models | Pieter Abbeel | |
Lecture 19 | Applications of HMMs / Speech | Pieter Abbeel | |
Lecture 20 | Machine Learning: Naive Bayes | Pieter Abbeel | |
Lecture 21 | Machine Learning: Perceptrons I | Nicholas Hay | |
Lecture 22 | Machine Learning: Perceptrons II | Pieter Abbeel | |
Lecture 23 | Machine Learning: Kernels and Clustering | Pieter Abbeel | |
Lecture 24 | Advanced Applications: NLP and Robotic Cars | Pieter Abbeel | |
Lecture 25 | Advanced Applications: Computer Vision and Robotics | Pieter Abbeel | |
Lecture 26 | Conclusion | Pieter Abbeel | Unrecorded |
Lecture Title | Lecturer | Notes | |
Lecture 1 | Introduction | Dan Klein | |
Lecture 2 | Uninformed Search | Dan Klein | |
Lecture 3 | Informed Search | Dan Klein | |
Lecture 4 | Constraint Satisfaction Problems I | Dan Klein | |
Lecture 5 | Constraint Satisfaction Problems II | Dan Klein | |
Lecture 6 | Adversarial Search | Dan Klein | |
Lecture 7 | Expectimax and Utilities | Dan Klein | |
Lecture 8 | Markov Decision Processes I | Dan Klein | |
Lecture 9 | Markov Decision Processes II | Dan Klein | |
Lecture 10 | Reinforcement Learning I | Dan Klein | |
Lecture 11 | Reinforcement Learning II | Dan Klein | |
Lecture 12 | Probability | Pieter Abbeel | |
Lecture 13 | Bayes' Nets: Representation | Pieter Abbeel | |
Lecture 14 | Bayes' Nets: Independence | Pieter Abbeel | |
Lecture 15 | Bayes' Nets: Inference | Pieter Abbeel | |
Lecture 16 | Bayes' Nets: Sampling | Pieter Abbeel | |
Lecture 17 | Decision Diagrams / Value of Perfect Information | Pieter Abbeel | |
Lecture 18 | Hidden Markov Models | Pieter Abbeel | |
Lecture 19 | Applications of HMMs / Speech | Dan Klein | |
Lecture 20 | Machine Learning: Naive Bayes | Dan Klein | |
Lecture 21 | Machine Learning: Perceptrons | Dan Klein | |
Lecture 22 | Machine Learning: Kernels and Clustering | Dan Klein | |
Lecture 23 | Machine Learning: Decision Trees and Neural Nets | Pieter Abbeel | |
Lecture 24 | Advanced Applications: Computer Vision and Robotics | Pieter Abbeel | |
Lecture 25 | Advanced Applications: NLP and Robotic Cars | Dan Klein, Pieter Abbeel |
Unrecorded |
Lecture 26 | Conclusion | Dan Klein, Pieter Abbeel |
Unrecorded |
Here is the complete set of lecture slides, including videos, and videos of demos run in lecture: Slides [~3 GB].
The list below contains all the lecture powerpoint slides:
The source files for all live in-lecture demos are being prepared from Berkeley AI for release
Latest arxiv paper submissionson AI
Peter Norvig-Teach Yourself Programming in Ten Years
How to do Research At the MIT AI Lab
A Roadmap towards Machine Intelligence
Collaborative Filtering with Recurrent Neural Networks (2016)
Wide & Deep Learning for Recommender Systems (2016)
Deep Collaborative Filtering via Marginalized Denoising Auto-encoder (2015)
Nonparametric bayesian multitask collaborative filtering (2013)
Tensorflow: Large-scale machine learning on heterogeneous distributed systems
https://infoscience.epfl.ch/record/82802/files/rr02-46.pdf
Theano: A CPU and GPU math expression compiler.
Caffe: Convolutional architecture for fast feature embedding
Chainer: A powerful, flexible and intuitive framework of neural networks
Large Scale Distributed Deep Networks
Large-scale video classification with convolutional neural networks
Efficient Estimation of Word Representations in Vector Space
Grammar as a Foreign Language
Going Deeper with Convolutions
ON RECTIFIED LINEAR UNITS FOR SPEECH PROCESSING
Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups.
Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks
google turning its lucrative web search over to AI machines
Stanford Syllabus CS 20SI: Tensorflow for Deep Learning Research
Comparative Study of Deep Learning Software Frameworks
** Reddit_ML- What Are You Reading**
Source:https://medium.com/intuitionmachine/infographic-best-practices-in-training-deep-learning-networks-b8a3df1db53
Source:https://medium.com/intuitionmachine/the-deep-learning-roadmap-f0b4cac7009a
Source: https://medium.com/intuitionmachine/infographic-best-practices-in-training-deep-learning-networks-b8a3df1db53
Source: http://www.asimovinstitute.org/neural-network-zoo/
Source: https://docs.microsoft.com/en-us/azure/machine-learning/machine-learning-algorithm-cheat-sheet
Source: http://blogs.sas.com/content/subconsciousmusings/2017/04/12/machine-learning-algorithm-use/
Source: http://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/
Source: https://www.analyticsvidhya.com/blog/2015/09/full-cheatsheet-machine-learning-algorithms/
Source: http://datasciencefree.com/python.pdf
Source: https://www.datacamp.com/community/tutorials/python-data-science-cheat-sheet-basics#gs.0x1rxEA
Source: https://www.dataquest.io/blog/numpy-cheat-sheet/
Source: http://datasciencefree.com/numpy.pdf
Source: https://www.datacamp.com/community/blog/python-numpy-cheat-sheet#gs.Nw3V6CE
Source: https://github.com/donnemartin/data-science-ipython-notebooks/blob/master/numpy/numpy.ipynb
Source: http://datasciencefree.com/pandas.pdf
Source: https://www.datacamp.com/community/blog/python-pandas-cheat-sheet#gs.S4P4T=U
Source: https://github.com/donnemartin/data-science-ipython-notebooks/blob/master/pandas/pandas.ipynb
Source: https://www.datacamp.com/community/blog/python-matplotlib-cheat-sheet
Source: https://github.com/donnemartin/data-science-ipython-notebooks/blob/master/matplotlib/matplotlib.ipynb
Source: https://www.datacamp.com/community/blog/scikit-learn-cheat-sheet#gs.fZ2A1Jk
Source: http://peekaboo-vision.blogspot.de/2013/01/machine-learning-cheat-sheet-for-scikit.html
Source: https://github.com/rcompton/ml_cheat_sheet/blob/master/supervised_learning.ipynb
Source: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/1_Introduction/basic_operations.ipynb
Source: https://github.com/bfortuner/pytorch-cheatsheet
Source: http://www.wzchen.com/s/probability_cheatsheet.pdf
Source: https://minireference.com/static/tutorials/linear_algebra_in_4_pages.pdf
Source: http://web.mit.edu/~csvoss/Public/usabo/stats_handout.pdf
Source: http://tutorial.math.lamar.edu/getfile.aspx?file=B,41,N