fantasy-ga is a Python module and a command line tool that uses the genetic algorithm to automate the generation of fantasy sports lineups. Currently supported platforms and leagues are as follows.
NBA | NFL | MLB | NHL | |
---|---|---|---|---|
DraftKings | ✅ | ✅ | ✅ | ✅ |
Dependencies: numpy
pip install fantasy-ga
LineupGenerator
class supports csv files exported from daily fantasy sports platforms for a given contest.
from fantasy_ga import LineupGeneratorfrom fantasy_ga.configs import Site, League, ModelConfig, ContestConfigdata_path = "examples/DraftKings/NBA/DKSalaries.csv"export_path = "examples/DraftKings/NBA/export.csv"cc = ContestConfig(Site.DK, League.NBA)mc = ModelConfig(# initial population of random lineupsn_pop = 1000# number of evolutions to itererate breeding and mutation forn_gen = 16# number of children lineups to choose from two best lineupsn_breed = 30# number of random mutations for each evolutionn_mutate = 30# number of compound evolutions with additional random lineupsn_compound = 5)model = LineupGenerator(cc, mc)model.read_csv(data_path)model.fit()# If top_n is not specified, it will save max(500, number of total lineups) lineups sorted by scoresmodel.export_csv(export_path, top_n=3)lineups, scores = model.get_top_n_lineups(1)print(f""" [Best Lineup] Players: {[model.id_to_name[id] for id in lineups[0]]} Salary Total: {sum([model.id_to_salary[id] for id in lineups[0]])} Expected FPTS: {scores[0]} """)
numpy.array
for player dataAlternatively, you can provide a numpy.array
where the first 3 columns correspond to player ID, salary, fantasy points (FPTS), followed by position information. For instance, the columns correspond to id,salary,fpts,PG,SG,SF,PF,C,G,F,UTIL
for DraftKings Fantasy Basketball.
If you would like to use custom numpy array for data matrix instead of csv files, you can do so by using the set_matrix()
method. For example
cc = ContestConfig(Site.DK, League.NBA)mc = ModelConfig() # use defaultm = np.array( [ [0, 6600, 36.46503, 0, 0, 0, 1, 1, 0, 1, 1], [1, 4200, 26.760368, 0, 0, 1, 1, 0, 0, 1, 1], [2, 3000, 4.38538, 1, 1, 0, 0, 0, 1, 0, 1], [3, 5000, 27.175564, 0, 0, 0, 0, 1, 0, 0, 1], [4, 3400, 16.734577, 0, 1, 1, 0, 0, 1, 1, 1], [5, 5900, 3.4382372, 0, 1, 1, 0, 0, 1, 1, 1], [6, 3000, -0.18490964, 1, 1, 0, 0, 0, 1, 0, 1], [7, 3000, 11.075589, 0, 0, 1, 1, 0, 0, 1, 1], [8, 3000, 6.469783, 0, 0, 0, 0, 1, 0, 0, 1], [9, 3000, 8.459954, 0, 0, 0, 0, 1, 0, 0, 1], [10, 5700, 33.98281, 0, 0, 0, 1, 1, 0, 1, 1], ] )model = LineupGenerator(cc, mc)model.set_matrix(m)model.fit()
LineupGenerator
class has two core methods which return optimised lineups. breed()
method chooses the best two lineups according to the sum of fantasy points with valid positions and swap players randomly (creating children lineups). mutate()
method randomly swaps players where applicable. fit()
method wraps around those methods such that those operations are done for multiple generations with additional random lineups.
As a Python module
$ python -m fantasy_ga --data_path=examples/DraftKings/NBA/DKSalaries.csv --export_path=examples/DraftKings/NBA/lineups.csv --site=DraftKings --league=NBA --n_pop=100 --n_gen=5 --n_breed=100 --n_mutate=100 --n_compound=10 --top_n_lineups=3
or a CLI command
$ fantasy-ga --data_path=examples/DraftKings/NBA/DKSalaries.csv --export_path=examples/DraftKings/NBA/lineups.csv --site=DraftKings --league=NBA --n_pop=100 --n_gen=5 --n_breed=100 --n_mutate=100 --n_compound=10 --top_n_lineups=3
which generates
Saved top 3 lineups into "examples/DraftKings/NBA/lineups.csv". [Best Lineup] Players: ['Reggie Jackson', 'Max Strus', 'Anthony Edwards', "Royce O'Neale", 'Nikola Jokic', 'Dejounte Murray', 'John Collins', 'Jarrett Allen'] Salary Total: 50000 Expected FPTS: 268.13