Qingchen Yu 1,* , Zifan Zheng 1,* , Shichao Song 2,* , Zhiyu Li 1,† , Feiyu Xiong 1 , Bo Tang 1 , Ding Chen 1
1 Instituto de Investigación de Algoritmos Avanzados, Shanghai, 2 Universidad Renmin de China
¿Quién debe prestar atención a nuestro trabajo?
Importante
? ¡Estrellanos! Al destacar nuestro proyecto en GitHub, recibirás todas las notificaciones de lanzamiento al instante. ¡Apreciamos su apoyo!
Resumimos nuestras principales contribuciones de la siguiente manera:
Como se muestra en la figura, se ilustran casos en los que marcos de evaluación como LM Eval Harness y OpenCompass no lograron extraer respuestas clave. Específicamente, A/T/C/M representan tareas con opciones de alfabeto/texto breve/etiqueta categórica/matemáticas, respectivamente.
Crear un conjunto de datos de referencia : para agilizar el proceso de evaluación utilizando xFinder, hemos estandarizado varios conjuntos de datos de referencia convencionales en un formato JSON unificado. Para obtener detalles de implementación, consulte create_benchmark_dataset.py. Si desea evaluar sus propios conjuntos de datos utilizando xFinder, consulte nuestra plantilla de script proporcionada benchmark_dataset_template.py para obtener orientación sobre la conversión de formato.
Prepare pares de control de calidad y resultados de LLM : recopile los resultados de LLM que desea evaluar. Asegúrese de que sus datos incluyan los siguientes elementos:
Implementar el modelo xFinder : seleccione uno de los siguientes modelos para la implementación:
Después de implementar el modelo xFinder, siga estos pasos para ejecutar una evaluación:
# Install xfinder
conda create -n xfinder_env python=3.10 -y
conda activate xfinder_env
pip install xfinder
# Perform an evaluation with xFinder (a built-in example)
CUDA_VISIBLE_DEVICES=0 python -m xfinder.eval --run-example --model-name xFinder-qwen1505 --inference-mode local --model-path-or-url /path/to/anonymized/model/xFinder-qwen1505
Este método le permite evaluar múltiples ejemplos almacenados en un archivo JSON.
# Initialize Evaluator object
evaluator = Evaluator (
model_name = "xFinder-qwen1505" , # Model name
inference_mode = "api" , # Inference mode, 'local' or 'api'
model_path_or_url = "http://your-anonymized-url/generate" , # Anonymized model path or URL
)
# Perform batch evaluation
data_path = "/path/to/your/data/example.json" # User needs to provide their own data path
accuracy = evaluator . evaluate ( data_path )
print ( f"Batch evaluation accuracy: { accuracy } " )
Este método le permite evaluar ejemplos individuales, que pueden integrarse en un marco de evaluación de LLM.
# Initialize Evaluator object
evaluator = Evaluator (
model_name = "xFinder-qwen1505" , # Model name
inference_mode = "local" , # Inference mode, 'local' or 'api'
model_path_or_url = "IAAR-Shanghai/xFinder-qwen1505" , # Anonymized model path or URL
)
# Define input for a single evaluation
question = "What is the capital of France?"
llm_output = "The capital of France is Paris."
standard_answer_range = "[ " Paris " , " Lyon " , " Marseille " ]"
key_answer_type = "short_text"
correct_answer = "Paris"
# Perform single example evaluation
result = evaluator . evaluate_single_example (
question ,
llm_output ,
standard_answer_range ,
key_answer_type ,
correct_answer
)
Consejo
demo.ipynb
para obtener ejemplos más detallados.export HF_ENDPOINT=https://hf-mirror.com
para usar el espejo chino si no puede conectarse a Hugging Face.Demostramos casos en cuatro tipos de preguntas en los que RegEx no logra extraer o con frecuencia extrae respuestas incorrectas, mientras que xFinder extrae con precisión las respuestas clave.
{
"key_answer_type" : " alphabet option " ,
"question" : " A man is seen playing guitar on a stage with others playing instruments behind him. The man grabs a guitar from the audience and begins playing both one after the other ... " ,
"llm_output" : " Option A is the correct choice as it describes ... " ,
"standard_answer_range" : " [['A', 'strums the guitar in the end, continues playing the guitar with the crowd following him as well as lining up next to him.'], ['B', 'continues playing the instruments and ends by waving to the crowd and walking off stage.'], ['C', 'then turns to the audience and gives a stuffed toy to the audience and continues playing.'], ['D', 'finally stops playing and moves his hands for the crowd to see.']] " ,
"gold_label" : " A " ,
"xFinder_output" : " A " ,
},
{
"key_answer_type" : " short text " ,
"question" : " If you really wanted a grape, where would you go to get it? Answer Choices: winery / fruit stand / field / kitchen / food " ,
"llm_output" : " The answer is winery / fruit stand / field / kitchen / food ... " ,
"standard_answer_range" : " [ " winery " , " fruit stand " , " field " , " kitchen " , " food " ] " ,
"gold_label" : " [No valid answer] " ,
"xFinder_output" : " [No valid answer] " ,
},
{
"key_answer_type" : " categorical label " ,
"question" : " How tall is the Sears Building ? " ,
"llm_output" : " The Sears Building is a specific structure, so the answer would be a Location ... " ,
"standard_answer_range" : " ['Abbreviation', 'Entity', 'Description', 'Person', 'Location', 'Number'] " ,
"gold_label" : " Location " ,
"xFinder_output" : " Location " ,
},
{
"key_answer_type" : " math " ,
"question" : " Mike made 69 dollars mowing lawns over the summer. If he spent 24 dollars buying new mower blades, how many 5 dollar games could he buy with the money he had left? " ,
"llm_output" : " To find out how many 5 dollar ... Let's calculate that: nn $45 / $5 = 9 nn So, Mike could buy 9 5 dollar games with the money he had left. " ,
"standard_answer_range" : " a(n) number / set / vector / matrix / interval / expression / function / equation / inequality " ,
"gold_label" : " 9 " ,
"xFinder_output" : " 9 " ,
}
Línea de base : OpenCompass, arnés de evaluación LM, UltraEval, GPT-4. Nuestro método : xFinder-qwen1505, xFinder-qwen1518, xFinder-gemma7, xFinder-chatglm36base, xFinder-llama38, xFinder-llama38it.
Evaluamos su precisión en la extracción de respuestas clave tanto del conjunto de pruebas KAF como de los conjuntos de generalización. La métrica en la tabla es la precisión.
@article{xFinder,
title={xFinder: Robust and Pinpoint Answer Extraction for Large Language Models},
author={Qingchen Yu and Zifan Zheng and Shichao Song and Zhiyu Li and Feiyu Xiong and Bo Tang and Ding Chen},
journal={arXiv preprint arXiv:2405.11874},
year={2024},
}
?Volver al inicio