Quin
1.0.0
Un marco fácil de usar para la verificación de hechos y la respuesta de preguntas a gran escala. [Manifestación]
El proyecto fue probado con Python 3.7 . Para la configuración y ejecución:
models/weights
: pip3 install -r requirements.txt
python quin.py --index example_docs.jsonl
python quin.py --port 1234
@inproceedings{samarinas2021improving,
title={Improving Evidence Retrieval for Automated Explainable Fact-Checking},
author={Samarinas, Chris and Hsu, Wynne and Lee, Mong Li},
booktitle={Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Demonstrations},
pages={84--91},
year={2021}
}
@inproceedings{samarinas2020latent,
title={Latent Retrieval for Large-Scale Fact-Checking and Question Answering with NLI training},
author={Samarinas, Chris and Hsu, Wynne and Lee, Mong Li},
booktitle={2020 IEEE 32nd International Conference on Tools with Artificial Intelligence (ICTAI)},
pages={941--948},
year={2020},
organization={IEEE}
}
Quin tiene la licencia MIT y el conjunto de datos Factual-NLI está bajo la licencia Attribution 4.0 International (CC BY 4.0).