Implementación de MetNet 3, modelo meteorológico neuronal SOTA de Google Deepmind, en Pytorch
La arquitectura del modelo es bastante corriente. Se trata básicamente de una U-net con un transformador de visión específico de buen rendimiento. Lo más interesante del artículo puede terminar siendo el escalamiento de pérdidas en la sección 4.3.2.
$ pip install metnet3-pytorch
import torch
from metnet3_pytorch import MetNet3
metnet3 = MetNet3 (
dim = 512 ,
num_lead_times = 722 ,
lead_time_embed_dim = 32 ,
input_spatial_size = 624 ,
attn_dim_head = 8 ,
hrrr_channels = 617 ,
input_2496_channels = 2 + 14 + 1 + 2 + 20 ,
input_4996_channels = 16 + 1 ,
precipitation_target_bins = dict (
mrms_rate = 512 ,
mrms_accumulation = 512 ,
),
surface_target_bins = dict (
omo_temperature = 256 ,
omo_dew_point = 256 ,
omo_wind_speed = 256 ,
omo_wind_component_x = 256 ,
omo_wind_component_y = 256 ,
omo_wind_direction = 180
),
hrrr_loss_weight = 10 ,
hrrr_norm_strategy = 'sync_batchnorm' , # this would use a sync batchnorm to normalize the input hrrr and target, without having to precalculate the mean and variance of the hrrr dataset per channel
hrrr_norm_statistics = None # you can also also set `hrrr_norm_strategy = "precalculated"` and pass in the mean and variance as shape `(2, 617)` through this keyword argument
)
# inputs
lead_times = torch . randint ( 0 , 722 , ( 2 ,))
hrrr_input_2496 = torch . randn (( 2 , 617 , 624 , 624 ))
hrrr_stale_state = torch . randn (( 2 , 1 , 624 , 624 ))
input_2496 = torch . randn (( 2 , 39 , 624 , 624 ))
input_4996 = torch . randn (( 2 , 17 , 624 , 624 ))
# targets
precipitation_targets = dict (
mrms_rate = torch . randint ( 0 , 512 , ( 2 , 512 , 512 )),
mrms_accumulation = torch . randint ( 0 , 512 , ( 2 , 512 , 512 )),
)
surface_targets = dict (
omo_temperature = torch . randint ( 0 , 256 , ( 2 , 128 , 128 )),
omo_dew_point = torch . randint ( 0 , 256 , ( 2 , 128 , 128 )),
omo_wind_speed = torch . randint ( 0 , 256 , ( 2 , 128 , 128 )),
omo_wind_component_x = torch . randint ( 0 , 256 , ( 2 , 128 , 128 )),
omo_wind_component_y = torch . randint ( 0 , 256 , ( 2 , 128 , 128 )),
omo_wind_direction = torch . randint ( 0 , 180 , ( 2 , 128 , 128 ))
)
hrrr_target = torch . randn ( 2 , 617 , 128 , 128 )
total_loss , loss_breakdown = metnet3 (
lead_times = lead_times ,
hrrr_input_2496 = hrrr_input_2496 ,
hrrr_stale_state = hrrr_stale_state ,
input_2496 = input_2496 ,
input_4996 = input_4996 ,
precipitation_targets = precipitation_targets ,
surface_targets = surface_targets ,
hrrr_target = hrrr_target
)
total_loss . backward ()
# after much training from above, you can predict as follows
metnet3 . eval ()
surface_preds , hrrr_pred , precipitation_preds = metnet3 (
lead_times = lead_times ,
hrrr_input_2496 = hrrr_input_2496 ,
hrrr_stale_state = hrrr_stale_state ,
input_2496 = input_2496 ,
input_4996 = input_4996 ,
)
# Dict[str, Tensor], Tensor, Dict[str, Tensor]
calcular toda la entropía cruzada y las pérdidas de MSE
Manejar automáticamente la normalización en todos los canales de HRRR mediante el seguimiento de una media de ejecución y la variación de los objetivos durante el entrenamiento (usando la norma por lotes de sincronización como truco).
permitir al investigador pasar sus propias variables de normalización para HRRR
cree todas las entradas según las especificaciones, también asegúrese de que la entrada de hrrr esté normalizada, ofrezca la opción de desnormalizar las predicciones de hrrr
asegúrese de que el modelo se pueda guardar y cargar fácilmente, con diferentes formas de manejar la norma hrrr
Descubra la incrustación topológica, consulte a un investigador del clima neuronal.
@article { Andrychowicz2023DeepLF ,
title = { Deep Learning for Day Forecasts from Sparse Observations } ,
author = { Marcin Andrychowicz and Lasse Espeholt and Di Li and Samier Merchant and Alexander Merose and Fred Zyda and Shreya Agrawal and Nal Kalchbrenner } ,
journal = { ArXiv } ,
year = { 2023 } ,
volume = { abs/2306.06079 } ,
url = { https://api.semanticscholar.org/CorpusID:259129311 }
}
@inproceedings { ElNouby2021XCiTCI ,
title = { XCiT: Cross-Covariance Image Transformers } ,
author = { Alaaeldin El-Nouby and Hugo Touvron and Mathilde Caron and Piotr Bojanowski and Matthijs Douze and Armand Joulin and Ivan Laptev and Natalia Neverova and Gabriel Synnaeve and Jakob Verbeek and Herv{'e} J{'e}gou } ,
booktitle = { Neural Information Processing Systems } ,
year = { 2021 } ,
url = { https://api.semanticscholar.org/CorpusID:235458262 }
}