Implementación de π₀ la arquitectura del modelo de base robótica propuesta por Physical Intelligence
El resumen de este trabajo sería que se trata de una Transfusión simplificada (Zhou et al.) con influencia de la Difusión Estable 3 (Esser et al.), principalmente la adopción de igualación de flujo en lugar de difusión para la generación de políticas, así como la separación de parámetros (Atención Conjunta de mmDIT). Se basan en un modelo de lenguaje de visión previamente entrenado, PaliGemma 2B.
Einops para el increíble empaque y desempaque, que se usa ampliamente aquí para administrar varios conjuntos de tokens.
Atención flexible para permitir una fácil combinación de atención autorregresiva y bidireccional
@Wonder1905 para revisar el código e identificar problemas
¿Tú? ¿Quizás un estudiante de doctorado que quiera contribuir a la última arquitectura SOTA para la clonación conductual?
$ pip install pi-zero-pytorch
import torch
from pi_zero_pytorch import π0
model = π0 (
dim = 512 ,
dim_action_input = 6 ,
dim_joint_state = 12 ,
num_tokens = 20_000
)
vision = torch . randn ( 1 , 1024 , 512 )
commands = torch . randint ( 0 , 20_000 , ( 1 , 1024 ))
joint_state = torch . randn ( 1 , 12 )
actions = torch . randn ( 1 , 32 , 6 )
loss , _ = model ( vision , commands , joint_state , actions )
loss . backward ()
# after much training
sampled_actions = model ( vision , commands , joint_state , trajectory_length = 32 ) # (1, 32, 6)
En la raíz del proyecto, ejecute
$ pip install ' .[test] ' # or `uv pip install '.[test]'`
Luego agregue sus pruebas a tests/test_pi_zero.py
y ejecute
$ pytest tests/
Eso es todo
@misc { Black2024 ,
author = { Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo Fusai, Lachy Groom, Karol Hausman, Brian Ichter, Szymon Jakubczak, Tim Jones, Liyiming Ke, Sergey Levine, Adrian Li-Bell, Mohith Mothukuri, Suraj Nair, Karl Pertsch, Lucy Xiaoyang Shi, James Tanner, Quan Vuong, Anna Walling, Haohuan Wang, Ury Zhilinsky } ,
url = { https://www.physicalintelligence.company/download/pi0.pdf }
}
@inproceedings { Zhou2024ValueRL ,
title = { Value Residual Learning For Alleviating Attention Concentration In Transformers } ,
author = { Zhanchao Zhou and Tianyi Wu and Zhiyun Jiang and Zhenzhong Lan } ,
year = { 2024 } ,
url = { https://api.semanticscholar.org/CorpusID:273532030 }
}
@inproceedings { Darcet2023VisionTN ,
title = { Vision Transformers Need Registers } ,
author = { Timoth'ee Darcet and Maxime Oquab and Julien Mairal and Piotr Bojanowski } ,
year = { 2023 } ,
url = { https://api.semanticscholar.org/CorpusID:263134283 }
}
@article { Li2024ImmiscibleDA ,
title = { Immiscible Diffusion: Accelerating Diffusion Training with Noise Assignment } ,
author = { Yiheng Li and Heyang Jiang and Akio Kodaira and Masayoshi Tomizuka and Kurt Keutzer and Chenfeng Xu } ,
journal = { ArXiv } ,
year = { 2024 } ,
volume = { abs/2406.12303 } ,
url = { https://api.semanticscholar.org/CorpusID:270562607 }
}
@inproceedings { Sadat2024EliminatingOA ,
title = { Eliminating Oversaturation and Artifacts of High Guidance Scales in Diffusion Models } ,
author = { Seyedmorteza Sadat and Otmar Hilliges and Romann M. Weber } ,
year = { 2024 } ,
url = { https://api.semanticscholar.org/CorpusID:273098845 }
}
@article { Bulatov2022RecurrentMT ,
title = { Recurrent Memory Transformer } ,
author = { Aydar Bulatov and Yuri Kuratov and Mikhail S. Burtsev } ,
journal = { ArXiv } ,
year = { 2022 } ,
volume = { abs/2207.06881 } ,
url = { https://api.semanticscholar.org/CorpusID:250526424 }
}
@inproceedings { Bessonov2023RecurrentAT ,
title = { Recurrent Action Transformer with Memory } ,
author = { A. B. Bessonov and Alexey Staroverov and Huzhenyu Zhang and Alexey K. Kovalev and D. Yudin and Aleksandr I. Panov } ,
year = { 2023 } ,
url = { https://api.semanticscholar.org/CorpusID:259188030 }
}
@article { Zhu2024HyperConnections ,
title = { Hyper-Connections } ,
author = { Defa Zhu and Hongzhi Huang and Zihao Huang and Yutao Zeng and Yunyao Mao and Banggu Wu and Qiyang Min and Xun Zhou } ,
journal = { ArXiv } ,
year = { 2024 } ,
volume = { abs/2409.19606 } ,
url = { https://api.semanticscholar.org/CorpusID:272987528 }
}
querida alicia