Implémentation de DALL-E 2, le réseau neuronal de synthèse texte-image mis à jour d'OpenAI, dans Pytorch.
Yannic Kilcher résumé | Explication AssemblyAI
La principale nouveauté semble être une couche supplémentaire d'indirection avec le réseau précédent (qu'il s'agisse d'un transformateur autorégressif ou d'un réseau de diffusion), qui prédit une intégration d'image basée sur l'intégration de texte de CLIP. Concrètement, ce référentiel ne construira que le réseau a priori de diffusion, car c'est la variante la plus performante (mais qui implique accessoirement un transformateur causal comme le réseau débruiteur ?)
Ce modèle est SOTA pour le texte en image pour l'instant.
Veuillez nous rejoindre si vous souhaitez aider à la réplication avec la communauté LAION | Entretien avec Yannic
Depuis le 23/05/22, ce n'est plus SOTA. SOTA sera là. Les versions Jax ainsi que le projet texte-vidéo seront déplacés vers l'architecture Imagen, car elle est beaucoup plus simple.
Un groupe de recherche a utilisé le code de ce référentiel pour former une diffusion fonctionnelle préalable pour leurs générations CLIP. Partagera leur travail une fois qu'ils auront publié leur prépublication. Ceci, ainsi que les propres expériences de Katherine, valident les conclusions d'OpenAI selon lesquelles le précédent supplémentaire augmente la variété des générations.
Il est maintenant vérifié que le décodeur fonctionne pour la génération inconditionnelle sur ma configuration expérimentale pour les fleurs d'Oxford. 2 chercheurs ont également confirmé que Decoder fonctionne pour eux.
en cours à 21 000 étapes
Justin Pinkney a formé avec succès la diffusion préalable dans le référentiel pour son application de conversion texte-image CLIP to Stylegan2
Romain a étendu la formation à 800 GPU avec les scripts disponibles sans aucun problème
Cette bibliothèque ne serait pas parvenue à cet état de fonctionnement sans l'aide de
... et bien d'autres. Merci!
$ pip install dalle2-pytorch
Entraîner DALLE-2 est un processus en 3 étapes, la formation de CLIP étant la plus importante
Pour entraîner CLIP, vous pouvez soit utiliser le package x-clip, soit rejoindre le discord LAION, où de nombreux efforts de réplication sont déjà en cours.
Ce référentiel démontrera l'intégration avec x-clip
pour les débutants
import torch
from dalle2_pytorch import CLIP
clip = CLIP (
dim_text = 512 ,
dim_image = 512 ,
dim_latent = 512 ,
num_text_tokens = 49408 ,
text_enc_depth = 1 ,
text_seq_len = 256 ,
text_heads = 8 ,
visual_enc_depth = 1 ,
visual_image_size = 256 ,
visual_patch_size = 32 ,
visual_heads = 8 ,
use_all_token_embeds = True , # whether to use fine-grained contrastive learning (FILIP)
decoupled_contrastive_learning = True , # use decoupled contrastive learning (DCL) objective function, removing positive pairs from the denominator of the InfoNCE loss (CLOOB + DCL)
extra_latent_projection = True , # whether to use separate projections for text-to-image vs image-to-text comparisons (CLOOB)
use_visual_ssl = True , # whether to do self supervised learning on images
visual_ssl_type = 'simclr' , # can be either 'simclr' or 'simsiam', depending on using DeCLIP or SLIP
use_mlm = False , # use masked language learning (MLM) on text (DeCLIP)
text_ssl_loss_weight = 0.05 , # weight for text MLM loss
image_ssl_loss_weight = 0.05 # weight for image self-supervised learning loss
). cuda ()
# mock data
text = torch . randint ( 0 , 49408 , ( 4 , 256 )). cuda ()
images = torch . randn ( 4 , 3 , 256 , 256 ). cuda ()
# train
loss = clip (
text ,
images ,
return_loss = True # needs to be set to True to return contrastive loss
)
loss . backward ()
# do the above with as many texts and images as possible in a loop
Ensuite, vous devrez former le décodeur, qui apprend à générer des images basées sur l'intégration d'images provenant du CLIP formé ci-dessus.
import torch
from dalle2_pytorch import Unet , Decoder , CLIP
# trained clip from step 1
clip = CLIP (
dim_text = 512 ,
dim_image = 512 ,
dim_latent = 512 ,
num_text_tokens = 49408 ,
text_enc_depth = 1 ,
text_seq_len = 256 ,
text_heads = 8 ,
visual_enc_depth = 1 ,
visual_image_size = 256 ,
visual_patch_size = 32 ,
visual_heads = 8
). cuda ()
# unet for the decoder
unet = Unet (
dim = 128 ,
image_embed_dim = 512 ,
cond_dim = 128 ,
channels = 3 ,
dim_mults = ( 1 , 2 , 4 , 8 )
). cuda ()
# decoder, which contains the unet and clip
decoder = Decoder (
unet = unet ,
clip = clip ,
timesteps = 100 ,
image_cond_drop_prob = 0.1 ,
text_cond_drop_prob = 0.5
). cuda ()
# mock images (get a lot of this)
images = torch . randn ( 4 , 3 , 256 , 256 ). cuda ()
# feed images into decoder
loss = decoder ( images )
loss . backward ()
# do the above for many many many many steps
# then it will learn to generate images based on the CLIP image embeddings
Enfin, la principale contribution de l’article. Le référentiel propose le réseau préalable de diffusion. Il prend les intégrations de texte CLIP et essaie de générer les intégrations d'images CLIP. Encore une fois, vous aurez besoin du CLIP formé dès la première étape
import torch
from dalle2_pytorch import DiffusionPriorNetwork , DiffusionPrior , CLIP
# get trained CLIP from step one
clip = CLIP (
dim_text = 512 ,
dim_image = 512 ,
dim_latent = 512 ,
num_text_tokens = 49408 ,
text_enc_depth = 6 ,
text_seq_len = 256 ,
text_heads = 8 ,
visual_enc_depth = 6 ,
visual_image_size = 256 ,
visual_patch_size = 32 ,
visual_heads = 8 ,
). cuda ()
# setup prior network, which contains an autoregressive transformer
prior_network = DiffusionPriorNetwork (
dim = 512 ,
depth = 6 ,
dim_head = 64 ,
heads = 8
). cuda ()
# diffusion prior network, which contains the CLIP and network (with transformer) above
diffusion_prior = DiffusionPrior (
net = prior_network ,
clip = clip ,
timesteps = 100 ,
cond_drop_prob = 0.2
). cuda ()
# mock data
text = torch . randint ( 0 , 49408 , ( 4 , 256 )). cuda ()
images = torch . randn ( 4 , 3 , 256 , 256 ). cuda ()
# feed text and images into diffusion prior network
loss = diffusion_prior ( text , images )
loss . backward ()
# do the above for many many many steps
# now the diffusion prior can generate image embeddings from the text embeddings
Dans cet article, ils ont en fait utilisé une technique récemment découverte, par Jonathan Ho lui-même (auteur original des DDPM, la technique de base utilisée dans DALL-E v2) pour la synthèse d'images haute résolution.
Cela peut facilement être utilisé dans ce cadre ainsi
import torch
from dalle2_pytorch import Unet , Decoder , CLIP
# trained clip from step 1
clip = CLIP (
dim_text = 512 ,
dim_image = 512 ,
dim_latent = 512 ,
num_text_tokens = 49408 ,
text_enc_depth = 6 ,
text_seq_len = 256 ,
text_heads = 8 ,
visual_enc_depth = 6 ,
visual_image_size = 256 ,
visual_patch_size = 32 ,
visual_heads = 8
). cuda ()
# 2 unets for the decoder (a la cascading DDPM)
unet1 = Unet (
dim = 32 ,
image_embed_dim = 512 ,
cond_dim = 128 ,
channels = 3 ,
dim_mults = ( 1 , 2 , 4 , 8 )
). cuda ()
unet2 = Unet (
dim = 32 ,
image_embed_dim = 512 ,
cond_dim = 128 ,
channels = 3 ,
dim_mults = ( 1 , 2 , 4 , 8 , 16 )
). cuda ()
# decoder, which contains the unet(s) and clip
decoder = Decoder (
clip = clip ,
unet = ( unet1 , unet2 ), # insert both unets in order of low resolution to highest resolution (you can have as many stages as you want here)
image_sizes = ( 256 , 512 ), # resolutions, 256 for first unet, 512 for second. these must be unique and in ascending order (matches with the unets passed in)
timesteps = 1000 ,
image_cond_drop_prob = 0.1 ,
text_cond_drop_prob = 0.5
). cuda ()
# mock images (get a lot of this)
images = torch . randn ( 4 , 3 , 512 , 512 ). cuda ()
# feed images into decoder, specifying which unet you want to train
# each unet can be trained separately, which is one of the benefits of the cascading DDPM scheme
loss = decoder ( images , unet_number = 1 )
loss . backward ()
loss = decoder ( images , unet_number = 2 )
loss . backward ()
# do the above for many steps for both unets
Enfin, générer les images DALL-E2 à partir du texte. Insérez le DiffusionPrior
formé ainsi que le Decoder
(qui enveloppe CLIP
, le transformateur causal et une ou plusieurs unités)
from dalle2_pytorch import DALLE2
dalle2 = DALLE2 (
prior = diffusion_prior ,
decoder = decoder
)
# send the text as a string if you want to use the simple tokenizer from DALLE v1
# or you can do it as token ids, if you have your own tokenizer
texts = [ 'glistening morning dew on a flower petal' ]
images = dalle2 ( texts ) # (1, 3, 256, 256)
C'est ça!
Voyons l'intégralité du script ci-dessous
import torch
from dalle2_pytorch import DALLE2 , DiffusionPriorNetwork , DiffusionPrior , Unet , Decoder , CLIP
clip = CLIP (
dim_text = 512 ,
dim_image = 512 ,
dim_latent = 512 ,
num_text_tokens = 49408 ,
text_enc_depth = 6 ,
text_seq_len = 256 ,
text_heads = 8 ,
visual_enc_depth = 6 ,
visual_image_size = 256 ,
visual_patch_size = 32 ,
visual_heads = 8
). cuda ()
# mock data
text = torch . randint ( 0 , 49408 , ( 4 , 256 )). cuda ()
images = torch . randn ( 4 , 3 , 256 , 256 ). cuda ()
# train
loss = clip (
text ,
images ,
return_loss = True
)
loss . backward ()
# do above for many steps ...
# prior networks (with transformer)
prior_network = DiffusionPriorNetwork (
dim = 512 ,
depth = 6 ,
dim_head = 64 ,
heads = 8
). cuda ()
diffusion_prior = DiffusionPrior (
net = prior_network ,
clip = clip ,
timesteps = 1000 ,
sample_timesteps = 64 ,
cond_drop_prob = 0.2
). cuda ()
loss = diffusion_prior ( text , images )
loss . backward ()
# do above for many steps ...
# decoder (with unet)
unet1 = Unet (
dim = 128 ,
image_embed_dim = 512 ,
text_embed_dim = 512 ,
cond_dim = 128 ,
channels = 3 ,
dim_mults = ( 1 , 2 , 4 , 8 ),
cond_on_text_encodings = True # set to True for any unets that need to be conditioned on text encodings
). cuda ()
unet2 = Unet (
dim = 16 ,
image_embed_dim = 512 ,
cond_dim = 128 ,
channels = 3 ,
dim_mults = ( 1 , 2 , 4 , 8 , 16 )
). cuda ()
decoder = Decoder (
unet = ( unet1 , unet2 ),
image_sizes = ( 128 , 256 ),
clip = clip ,
timesteps = 100 ,
image_cond_drop_prob = 0.1 ,
text_cond_drop_prob = 0.5
). cuda ()
for unet_number in ( 1 , 2 ):
loss = decoder ( images , text = text , unet_number = unet_number ) # this can optionally be decoder(images, text) if you wish to condition on the text encodings as well, though it was hinted in the paper it didn't do much
loss . backward ()
# do above for many steps
dalle2 = DALLE2 (
prior = diffusion_prior ,
decoder = decoder
)
images = dalle2 (
[ 'cute puppy chasing after a squirrel' ],
cond_scale = 2. # classifier free guidance strength (> 1 would strengthen the condition)
)
# save your image (in this example, of size 256x256)
Tout dans ce fichier Lisez-moi devrait fonctionner sans erreur
Vous pouvez également entraîner le décodeur sur des images d'une taille supérieure à la taille (disons 512 x 512) à laquelle CLIP a été formé (256 x 256). Les images seront redimensionnées à la résolution d'image CLIP pour les intégrations d'images
Pour le profane, ne vous inquiétez pas, la formation sera entièrement automatisée dans un outil CLI, du moins pour les formations à petite échelle.
Il est probable, lors de la mise à l'échelle, que vous prétraitiez d'abord vos images et votre texte dans les intégrations correspondantes avant de former le réseau précédent. Vous pouvez le faire facilement en passant simplement image_embed
, text_embed
et éventuellement text_encodings
Exemple de travail ci-dessous
import torch
from dalle2_pytorch import DiffusionPriorNetwork , DiffusionPrior , CLIP
# get trained CLIP from step one
clip = CLIP (
dim_text = 512 ,
dim_image = 512 ,
dim_latent = 512 ,
num_text_tokens = 49408 ,
text_enc_depth = 6 ,
text_seq_len = 256 ,
text_heads = 8 ,
visual_enc_depth = 6 ,
visual_image_size = 256 ,
visual_patch_size = 32 ,
visual_heads = 8 ,
). cuda ()
# setup prior network, which contains an autoregressive transformer
prior_network = DiffusionPriorNetwork (
dim = 512 ,
depth = 6 ,
dim_head = 64 ,
heads = 8
). cuda ()
# diffusion prior network, which contains the CLIP and network (with transformer) above
diffusion_prior = DiffusionPrior (
net = prior_network ,
clip = clip ,
timesteps = 100 ,
cond_drop_prob = 0.2 ,
condition_on_text_encodings = False # this probably should be true, but just to get Laion started
). cuda ()
# mock data
text = torch . randint ( 0 , 49408 , ( 4 , 256 )). cuda ()
images = torch . randn ( 4 , 3 , 256 , 256 ). cuda ()
# precompute the text and image embeddings
# here using the diffusion prior class, but could be done with CLIP alone
clip_image_embeds = diffusion_prior . clip . embed_image ( images ). image_embed
clip_text_embeds = diffusion_prior . clip . embed_text ( text ). text_embed
# feed text and images into diffusion prior network
loss = diffusion_prior (
text_embed = clip_text_embeds ,
image_embed = clip_image_embeds
)
loss . backward ()
# do the above for many many many steps
# now the diffusion prior can generate image embeddings from the text embeddings
Vous pouvez également utiliser complètement CLIP
-less, auquel cas vous devrez transmettre le image_embed_dim
dans le DiffusionPrior
lors de l'initialisation.
import torch
from dalle2_pytorch import DiffusionPriorNetwork , DiffusionPrior
# setup prior network, which contains an autoregressive transformer
prior_network = DiffusionPriorNetwork (
dim = 512 ,
depth = 6 ,
dim_head = 64 ,
heads = 8
). cuda ()
# diffusion prior network, which contains the CLIP and network (with transformer) above
diffusion_prior = DiffusionPrior (
net = prior_network ,
image_embed_dim = 512 , # this needs to be set
timesteps = 100 ,
cond_drop_prob = 0.2 ,
condition_on_text_encodings = False # this probably should be true, but just to get Laion started
). cuda ()
# mock data
text = torch . randint ( 0 , 49408 , ( 4 , 256 )). cuda ()
images = torch . randn ( 4 , 3 , 256 , 256 ). cuda ()
# precompute the text and image embeddings
# here using the diffusion prior class, but could be done with CLIP alone
clip_image_embeds = torch . randn ( 4 , 512 ). cuda ()
clip_text_embeds = torch . randn ( 4 , 512 ). cuda ()
# feed text and images into diffusion prior network
loss = diffusion_prior (
text_embed = clip_text_embeds ,
image_embed = clip_image_embeds
)
loss . backward ()
# do the above for many many many steps
# now the diffusion prior can generate image embeddings from the text embeddings
Bien qu'il soit possible qu'ils utilisent un CLIP inédit et plus puissant, vous pouvez utiliser l'un de ceux publiés, si vous ne souhaitez pas former votre propre CLIP à partir de zéro. Cela permettra également à la communauté de valider plus rapidement les conclusions du document.
Pour utiliser un CLIP OpenAI pré-entraîné, importez simplement OpenAIClipAdapter
et transmettez-le dans DiffusionPrior
ou Decoder
comme ceci
import torch
from dalle2_pytorch import DALLE2 , DiffusionPriorNetwork , DiffusionPrior , Unet , Decoder , OpenAIClipAdapter
# openai pretrained clip - defaults to ViT-B/32
clip = OpenAIClipAdapter ()
# mock data
text = torch . randint ( 0 , 49408 , ( 4 , 256 )). cuda ()
images = torch . randn ( 4 , 3 , 256 , 256 ). cuda ()
# prior networks (with transformer)
prior_network = DiffusionPriorNetwork (
dim = 512 ,
depth = 6 ,
dim_head = 64 ,
heads = 8
). cuda ()
diffusion_prior = DiffusionPrior (
net = prior_network ,
clip = clip ,
timesteps = 100 ,
cond_drop_prob = 0.2
). cuda ()
loss = diffusion_prior ( text , images )
loss . backward ()
# do above for many steps ...
# decoder (with unet)
unet1 = Unet (
dim = 128 ,
image_embed_dim = 512 ,
cond_dim = 128 ,
channels = 3 ,
dim_mults = ( 1 , 2 , 4 , 8 ),
text_embed_dim = 512 ,
cond_on_text_encodings = True # set to True for any unets that need to be conditioned on text encodings (ex. first unet in cascade)
). cuda ()
unet2 = Unet (
dim = 16 ,
image_embed_dim = 512 ,
cond_dim = 128 ,
channels = 3 ,
dim_mults = ( 1 , 2 , 4 , 8 , 16 )
). cuda ()
decoder = Decoder (
unet = ( unet1 , unet2 ),
image_sizes = ( 128 , 256 ),
clip = clip ,
timesteps = 1000 ,
sample_timesteps = ( 250 , 27 ),
image_cond_drop_prob = 0.1 ,
text_cond_drop_prob = 0.5
). cuda ()
for unet_number in ( 1 , 2 ):
loss = decoder ( images , text = text , unet_number = unet_number ) # this can optionally be decoder(images, text) if you wish to condition on the text encodings as well, though it was hinted in the paper it didn't do much
loss . backward ()
# do above for many steps
dalle2 = DALLE2 (
prior = diffusion_prior ,
decoder = decoder
)
images = dalle2 (
[ 'a butterfly trying to escape a tornado' ],
cond_scale = 2. # classifier free guidance strength (> 1 would strengthen the condition)
)
# save your image (in this example, of size 256x256)
Alternativement, vous pouvez également utiliser Open Clip
$ pip install open-clip-torch
Ex. en utilisant le modèle SOTA Open Clip formé par Romain