Ces outils vous aident à évaluer si un portefeuille financier s'aligne sur les objectifs climatiques. Ils résument les indicateurs clés attribués au portefeuille (par exemple, production, facteurs d'émission) et calculent des objectifs basés sur des scénarios climatiques. Ils implémentent en R la dernière étape du logiciel libre 'PACTA' (Paris Agreement Capital Transition Assessment ; https://www.transitionmonitor.com/). Les institutions financières utilisent « PACTA » pour étudier l'impact de leur allocation de capital sur le climat.
Installez la version publiée de r2dii.analysis depuis CRAN avec :
install.packages( " r2dii.analysis " )
Ou installez la version de développement de r2dii.analysis depuis GitHub avec :
# install.packages("pak")
pak :: pak( " RMI-PACTA/r2dii.analysis " )
library()
pour joindre les packages dont vous avez besoin. r2dii.analysis ne dépend pas des packages r2dii.data et r2dii.match ; mais nous vous suggérons de les installer – avec install.packages(c("r2dii.data", "r2dii.match"))
– afin de pouvoir reproduire nos exemples. library( r2dii.data )
library( r2dii.match )
library( r2dii.analysis )
r2dii.match::match_name()
pour identifier les correspondances entre votre portefeuille de prêts et les données au niveau de l'actif. matched <- match_name( loanbook_demo , abcd_demo ) % > %
prioritize()
target_sda()
pour calculer les objectifs SDA d'émissions de CO2. matched % > %
target_sda(
abcd = abcd_demo ,
co2_intensity_scenario = co2_intensity_scenario_demo ,
region_isos = region_isos_demo
)
# > Warning: Removing rows in abcd where `emission_factor` is NA
# > # A tibble: 220 × 6
# > sector year region scenario_source emission_factor_metric
# >
# > 1 cement 2020 advanced economies demo_2020 projected
# > 2 cement 2020 developing asia demo_2020 projected
# > 3 cement 2020 global demo_2020 projected
# > 4 cement 2021 advanced economies demo_2020 projected
# > 5 cement 2021 developing asia demo_2020 projected
# > 6 cement 2021 global demo_2020 projected
# > 7 cement 2022 advanced economies demo_2020 projected
# > 8 cement 2022 developing asia demo_2020 projected
# > 9 cement 2022 global demo_2020 projected
# > 10 cement 2023 advanced economies demo_2020 projected
# > # ℹ 210 more rows
# > # ℹ 1 more variable: emission_factor_value
target_market_share
pour calculer les objectifs du scénario de part de marché au niveau du portefeuille : matched % > %
target_market_share(
abcd = abcd_demo ,
scenario = scenario_demo_2020 ,
region_isos = region_isos_demo
)
# > # A tibble: 1,076 × 10
# > sector technology year region scenario_source metric production
# >
# > 1 automotive electric 2020 global demo_2020 projected 145649.
# > 2 automotive electric 2020 global demo_2020 target_cps 145649.
# > 3 automotive electric 2020 global demo_2020 target_sds 145649.
# > 4 automotive electric 2020 global demo_2020 target_sps 145649.
# > 5 automotive electric 2021 global demo_2020 projected 147480.
# > 6 automotive electric 2021 global demo_2020 target_cps 146915.
# > 7 automotive electric 2021 global demo_2020 target_sds 153332.
# > 8 automotive electric 2021 global demo_2020 target_sps 147258.
# > 9 automotive electric 2022 global demo_2020 projected 149310.
# > 10 automotive electric 2022 global demo_2020 target_cps 148155.
# > # ℹ 1,066 more rows
# > # ℹ 3 more variables: technology_share , scope ,
# > # percentage_of_initial_production_by_scope
matched % > %
target_market_share(
abcd = abcd_demo ,
scenario = scenario_demo_2020 ,
region_isos = region_isos_demo ,
by_company = TRUE
)
# > Warning: You've supplied `by_company = TRUE` and `weight_production = TRUE`.
# > This will result in company-level results, weighted by the portfolio
# > loan size, which is rarely useful. Did you mean to set one of these
# > arguments to `FALSE`?
# > # A tibble: 14,505 × 11
# > sector technology year region scenario_source name_abcd metric production
# >
# > 1 automoti… electric 2020 global demo_2020 Bernardi… proje… 17951.
# > 2 automoti… electric 2020 global demo_2020 Bernardi… targe… 17951.
# > 3 automoti… electric 2020 global demo_2020 Bernardi… targe… 17951.
# > 4 automoti… electric 2020 global demo_2020 Bernardi… targe… 17951.
# > 5 automoti… electric 2020 global demo_2020 Christia… proje… 11471.
# > 6 automoti… electric 2020 global demo_2020 Christia… targe… 11471.
# > 7 automoti… electric 2020 global demo_2020 Christia… targe… 11471.
# > 8 automoti… electric 2020 global demo_2020 Christia… targe… 11471.
# > 9 automoti… electric 2020 global demo_2020 Donati, … proje… 5611.
# > 10 automoti… electric 2020 global demo_2020 Donati, … targe… 5611.
# > # ℹ 14,495 more rows
# > # ℹ 3 more variables: technology_share , scope ,
# > # percentage_of_initial_production_by_scope
Les fonctions target_*()
fournissent des raccourcis pour les opérations courantes. Ils regroupent certaines fonctions utilitaires que vous pouvez également utiliser directement :
join_abcd_scenario()
pour joindre un ensemble de données correspondant aux données de scénario pertinentes et pour sélectionner des actifs dans les régions pertinentes. loanbook_joined_to_abcd_scenario <- matched % > %
join_abcd_scenario(
abcd = abcd_demo ,
scenario = scenario_demo_2020 ,
region_isos = region_isos_demo
)
summarize_weighted_production()
avec différents arguments de regroupement pour calculer les cibles du scénario : # portfolio level
loanbook_joined_to_abcd_scenario % > %
summarize_weighted_production( scenario , tmsr , smsp , region )
# > # A tibble: 756 × 9
# > sector_abcd technology year scenario tmsr smsp region
# >
# > 1 automotive electric 2020 cps 1 0 global
# > 2 automotive electric 2020 sds 1 0 global
# > 3 automotive electric 2020 sps 1 0 global
# > 4 automotive electric 2021 cps 1.12 0.00108 global
# > 5 automotive electric 2021 sds 1.16 0.00653 global
# > 6 automotive electric 2021 sps 1.14 0.00137 global
# > 7 automotive electric 2022 cps 1.24 0.00213 global
# > 8 automotive electric 2022 sds 1.32 0.0131 global
# > 9 automotive electric 2022 sps 1.29 0.00273 global
# > 10 automotive electric 2023 cps 1.35 0.00316 global
# > # ℹ 746 more rows
# > # ℹ 2 more variables: weighted_production ,
# > # weighted_technology_share
# company level
loanbook_joined_to_abcd_scenario % > %
summarize_weighted_production( scenario , tmsr , smsp , region , name_abcd )
# > # A tibble: 13,023 × 10
# > sector_abcd technology year scenario tmsr smsp region name_abcd
# >
# > 1 automotive electric 2020 cps 1 0 global Bernardi, Bernardi …
# > 2 automotive electric 2020 cps 1 0 global Christiansen PLC
# > 3 automotive electric 2020 cps 1 0 global Donati, Donati e Do…
# > 4 automotive electric 2020 cps 1 0 global DuBuque-DuBuque
# > 5 automotive electric 2020 cps 1 0 global Ferrari-Ferrari SPA
# > 6 automotive electric 2020 cps 1 0 global Ferry and Sons
# > 7 automotive electric 2020 cps 1 0 global Goyette-Goyette
# > 8 automotive electric 2020 cps 1 0 global Guerra, Guerra e Gu…
# > 9 automotive electric 2020 cps 1 0 global Gutkowski, Gutkowsk…
# > 10 automotive electric 2020 cps 1 0 global Hilpert, Hilpert an…
# > # ℹ 13,013 more rows
# > # ℹ 2 more variables: weighted_production ,
# > # weighted_technology_share
Commencer.
Ce projet a reçu un financement du programme LIFE de l'Union européenne et de l'Initiative internationale pour le climat (IKI). Le ministère fédéral de l'Environnement, de la Protection de la nature et de la Sûreté nucléaire (BMU) soutient cette initiative sur la base d'une décision adoptée par le Bundestag allemand. Les opinions exprimées relèvent de la seule responsabilité des auteurs et ne reflètent pas nécessairement celles des bailleurs de fonds. Les bailleurs de fonds ne sont pas responsables de l'usage qui pourrait être fait des informations qu'il contient.