[中文|anglais]
Mise en œuvre du BERT. Des modèles officiels pré-entraînés pourraient être chargés pour l’extraction et la prédiction de fonctionnalités.
pip install keras-bert
Dans la démo d'extraction de fonctionnalités, vous devriez pouvoir obtenir les mêmes résultats d'extraction que le modèle officiel chinese_L-12_H-768_A-12
. Et dans la démonstration de prédiction, le mot manquant dans la phrase pouvait être prédit.
La démo d'extraction montre comment convertir en un modèle qui s'exécute sur TPU.
La démo de classification montre comment appliquer le modèle à des tâches de classification simples.
La classe Tokenizer
est utilisée pour diviser des textes et générer des indices :
from keras_bert import Tokenizer
token_dict = {
'[CLS]' : 0 ,
'[SEP]' : 1 ,
'un' : 2 ,
'##aff' : 3 ,
'##able' : 4 ,
'[UNK]' : 5 ,
}
tokenizer = Tokenizer ( token_dict )
print ( tokenizer . tokenize ( 'unaffable' )) # The result should be `['[CLS]', 'un', '##aff', '##able', '[SEP]']`
indices , segments = tokenizer . encode ( 'unaffable' )
print ( indices ) # Should be `[0, 2, 3, 4, 1]`
print ( segments ) # Should be `[0, 0, 0, 0, 0]`
print ( tokenizer . tokenize ( first = 'unaffable' , second = '钢' ))
# The result should be `['[CLS]', 'un', '##aff', '##able', '[SEP]', '钢', '[SEP]']`
indices , segments = tokenizer . encode ( first = 'unaffable' , second = '钢' , max_len = 10 )
print ( indices ) # Should be `[0, 2, 3, 4, 1, 5, 1, 0, 0, 0]`
print ( segments ) # Should be `[0, 0, 0, 0, 0, 1, 1, 0, 0, 0]`
from tensorflow import keras
from keras_bert import get_base_dict , get_model , compile_model , gen_batch_inputs
# A toy input example
sentence_pairs = [
[[ 'all' , 'work' , 'and' , 'no' , 'play' ], [ 'makes' , 'jack' , 'a' , 'dull' , 'boy' ]],
[[ 'from' , 'the' , 'day' , 'forth' ], [ 'my' , 'arm' , 'changed' ]],
[[ 'and' , 'a' , 'voice' , 'echoed' ], [ 'power' , 'give' , 'me' , 'more' , 'power' ]],
]
# Build token dictionary
token_dict = get_base_dict () # A dict that contains some special tokens
for pairs in sentence_pairs :
for token in pairs [ 0 ] + pairs [ 1 ]:
if token not in token_dict :
token_dict [ token ] = len ( token_dict )
token_list = list ( token_dict . keys ()) # Used for selecting a random word
# Build & train the model
model = get_model (
token_num = len ( token_dict ),
head_num = 5 ,
transformer_num = 12 ,
embed_dim = 25 ,
feed_forward_dim = 100 ,
seq_len = 20 ,
pos_num = 20 ,
dropout_rate = 0.05 ,
)
compile_model ( model )
model . summary ()
def _generator ():
while True :
yield gen_batch_inputs (
sentence_pairs ,
token_dict ,
token_list ,
seq_len = 20 ,
mask_rate = 0.3 ,
swap_sentence_rate = 1.0 ,
)
model . fit_generator (
generator = _generator (),
steps_per_epoch = 1000 ,
epochs = 100 ,
validation_data = _generator (),
validation_steps = 100 ,
callbacks = [
keras . callbacks . EarlyStopping ( monitor = 'val_loss' , patience = 5 )
],
)
# Use the trained model
inputs , output_layer = get_model (
token_num = len ( token_dict ),
head_num = 5 ,
transformer_num = 12 ,
embed_dim = 25 ,
feed_forward_dim = 100 ,
seq_len = 20 ,
pos_num = 20 ,
dropout_rate = 0.05 ,
training = False , # The input layers and output layer will be returned if `training` is `False`
trainable = False , # Whether the model is trainable. The default value is the same with `training`
output_layer_num = 4 , # The number of layers whose outputs will be concatenated as a single output.
# Only available when `training` is `False`.
)
L'optimiseur AdamWarmup
est fourni pour l'échauffement et la décroissance. Le taux d'apprentissage atteindra lr
en étapes warmpup_steps
et diminuera jusqu'à min_lr
en étapes decay_steps
. Il existe une fonction d'assistance calc_train_steps
pour calculer les deux étapes :
import numpy as np
from keras_bert import AdamWarmup , calc_train_steps
train_x = np . random . standard_normal (( 1024 , 100 ))
total_steps , warmup_steps = calc_train_steps (
num_example = train_x . shape [ 0 ],
batch_size = 32 ,
epochs = 10 ,
warmup_proportion = 0.1 ,
)
optimizer = AdamWarmup ( total_steps , warmup_steps , lr = 1e-3 , min_lr = 1e-5 )
Plusieurs URL de téléchargement ont été ajoutées. Vous pouvez obtenir le chemin téléchargé et non compressé d'un point de contrôle en :
from keras_bert import get_pretrained , PretrainedList , get_checkpoint_paths
model_path = get_pretrained ( PretrainedList . multi_cased_base )
paths = get_checkpoint_paths ( model_path )
print ( paths . config , paths . checkpoint , paths . vocab )
Vous pouvez utiliser la fonction d'assistance extract_embeddings
si les fonctionnalités des jetons ou des phrases (sans réglage supplémentaire) correspondent à vos besoins. Pour extraire les fonctionnalités de tous les jetons :
from keras_bert import extract_embeddings
model_path = 'xxx/yyy/uncased_L-12_H-768_A-12'
texts = [ 'all work and no play' , 'makes jack a dull boy~' ]
embeddings = extract_embeddings ( model_path , texts )
Le résultat renvoyé est une liste de la même longueur que les textes. Chaque élément de la liste est un tableau numpy tronqué par la longueur de l'entrée. Les formes de sorties dans cet exemple sont (7, 768)
et (8, 768)
.
Lorsque les entrées sont des phrases appariées et que vous avez besoin des sorties de NSP
et du pooling maximum des 4 dernières couches :
from keras_bert import extract_embeddings , POOL_NSP , POOL_MAX
model_path = 'xxx/yyy/uncased_L-12_H-768_A-12'
texts = [
( 'all work and no play' , 'makes jack a dull boy' ),
( 'makes jack a dull boy' , 'all work and no play' ),
]
embeddings = extract_embeddings ( model_path , texts , output_layer_num = 4 , poolings = [ POOL_NSP , POOL_MAX ])
Il n’y a aucune fonctionnalité de jeton dans les résultats. Les sorties de NSP
et max-pooling seront concaténées avec la forme finale (768 x 4 x 2,)
.
Le deuxième argument de la fonction d'assistance est un générateur. Pour extraire les fonctionnalités d'un fichier :
import codecs
from keras_bert import extract_embeddings
model_path = 'xxx/yyy/uncased_L-12_H-768_A-12'
with codecs . open ( 'xxx.txt' , 'r' , 'utf8' ) as reader :
texts = map ( lambda x : x . strip (), reader )
embeddings = extract_embeddings ( model_path , texts )