convmodel
1.0.0
convmodel fournit un modèle de conversation basé sur le modèle GPT-2 des transformateurs
Caractéristiques
Un exemple simple pour affiner le modèle GPT-2 et générer une réponse :
from convmodel import ConversationModel
from convmodel import ConversationExample
# Load model on GPU
model = ConversationModel . from_pretrained ( "gpt2" )
# Define training/validation examples
train_iterator = [
ConversationExample ( conversation = [
"Hello" ,
"Hi, how are you?" ,
"Good, thank you, how about you?" ,
"Good, thanks!"
]),
ConversationExample ( conversation = [
"I am hungry" ,
"How about eating pizza?"
]),
]
valid_iterator = [
ConversationExample ( conversation = [
"Tired..." ,
"Let's have a break!" ,
"Nice idea!"
]),
]
# Fine-tune model
model . fit ( train_iterator = train_iterator , valid_iterator = valid_iterator )
# Generate response
model . generate ( context = [ "Hello" , "How are you" ], do_sample = True , top_p = 0.95 , top_k = 50 )
# Output could be like below if sufficient examples were given.
# => ConversationModelOutput(responses=['Good thank you'], context=['Hello', 'How are you'])
Veuillez vous référer au document pour plus de détails sur l'installation, l'architecture du modèle et l'utilisation.
Profitez de parler avec votre IA conversationnelle