deformable attention
0.0.19
Implémentation de l'attention déformable de cet article dans Pytorch, qui semble être une amélioration par rapport à ce qui a été proposé dans DETR. L'intégration positionnelle relative a également été modifiée pour une meilleure extrapolation, en utilisant l'intégration positionnelle continue proposée dans SwinV2.
$ pip install deformable-attention
import torch
from deformable_attention import DeformableAttention
attn = DeformableAttention (
dim = 512 , # feature dimensions
dim_head = 64 , # dimension per head
heads = 8 , # attention heads
dropout = 0. , # dropout
downsample_factor = 4 , # downsample factor (r in paper)
offset_scale = 4 , # scale of offset, maximum offset
offset_groups = None , # number of offset groups, should be multiple of heads
offset_kernel_size = 6 , # offset kernel size
)
x = torch . randn ( 1 , 512 , 64 , 64 )
attn ( x ) # (1, 512, 64, 64)
Attention déformable 3D
import torch
from deformable_attention import DeformableAttention3D
attn = DeformableAttention3D (
dim = 512 , # feature dimensions
dim_head = 64 , # dimension per head
heads = 8 , # attention heads
dropout = 0. , # dropout
downsample_factor = ( 2 , 8 , 8 ), # downsample factor (r in paper)
offset_scale = ( 2 , 8 , 8 ), # scale of offset, maximum offset
offset_kernel_size = ( 4 , 10 , 10 ), # offset kernel size
)
x = torch . randn ( 1 , 512 , 10 , 32 , 32 ) # (batch, dimension, frames, height, width)
attn ( x ) # (1, 512, 10, 32, 32)
1d déformable attention pour faire bonne mesure
import torch
from deformable_attention import DeformableAttention1D
attn = DeformableAttention1D (
dim = 128 ,
downsample_factor = 4 ,
offset_scale = 2 ,
offset_kernel_size = 6
)
x = torch . randn ( 1 , 128 , 512 )
attn ( x ) # (1, 128, 512)
@misc { xia2022vision ,
title = { Vision Transformer with Deformable Attention } ,
author = { Zhuofan Xia and Xuran Pan and Shiji Song and Li Erran Li and Gao Huang } ,
year = { 2022 } ,
eprint = { 2201.00520 } ,
archivePrefix = { arXiv } ,
primaryClass = { cs.CV }
}
@misc { liu2021swin ,
title = { Swin Transformer V2: Scaling Up Capacity and Resolution } ,
author = { Ze Liu and Han Hu and Yutong Lin and Zhuliang Yao and Zhenda Xie and Yixuan Wei and Jia Ning and Yue Cao and Zheng Zhang and Li Dong and Furu Wei and Baining Guo } ,
year = { 2021 } ,
eprint = { 2111.09883 } ,
archivePrefix = { arXiv } ,
primaryClass = { cs.CV }
}