Un wrapper fonctionnel simple pour un pré-entraînement rapide des modèles de langage comme détaillé dans cet article. Il accélère l'entraînement (par rapport à la modélisation normale du langage masqué) d'un facteur 4 et atteint finalement de meilleures performances s'il est entraîné encore plus longtemps. Un merci spécial à Erik Nijkamp pour avoir pris le temps de reproduire les résultats pour GLUE.
$ pip install electra-pytorch
L'exemple suivant utilise reformer-pytorch
, qui peut être installé par pip.
import torch
from torch import nn
from reformer_pytorch import ReformerLM
from electra_pytorch import Electra
# (1) instantiate the generator and discriminator, making sure that the generator is roughly a quarter to a half of the size of the discriminator
generator = ReformerLM (
num_tokens = 20000 ,
emb_dim = 128 ,
dim = 256 , # smaller hidden dimension
heads = 4 , # less heads
ff_mult = 2 , # smaller feed forward intermediate dimension
dim_head = 64 ,
depth = 12 ,
max_seq_len = 1024
)
discriminator = ReformerLM (
num_tokens = 20000 ,
emb_dim = 128 ,
dim = 1024 ,
dim_head = 64 ,
heads = 16 ,
depth = 12 ,
ff_mult = 4 ,
max_seq_len = 1024
)
# (2) weight tie the token and positional embeddings of generator and discriminator
generator . token_emb = discriminator . token_emb
generator . pos_emb = discriminator . pos_emb
# weight tie any other embeddings if available, token type embeddings, etc.
# (3) instantiate electra
trainer = Electra (
generator ,
discriminator ,
discr_dim = 1024 , # the embedding dimension of the discriminator
discr_layer = 'reformer' , # the layer name in the discriminator, whose output would be used for predicting token is still the same or replaced
mask_token_id = 2 , # the token id reserved for masking
pad_token_id = 0 , # the token id for padding
mask_prob = 0.15 , # masking probability for masked language modeling
mask_ignore_token_ids = [] # ids of tokens to ignore for mask modeling ex. (cls, sep)
)
# (4) train
data = torch . randint ( 0 , 20000 , ( 1 , 1024 ))
results = trainer ( data )
results . loss . backward ()
# after much training, the discriminator should have improved
torch . save ( discriminator , f'./pretrained-model.pt' )
Si vous préférez que le framework n'intercepte pas automatiquement la sortie cachée du discriminateur, vous pouvez transmettre le discriminateur (avec le linéaire supplémentaire [dim x 1]) par vous-même avec ce qui suit.
import torch
from torch import nn
from reformer_pytorch import ReformerLM
from electra_pytorch import Electra
# (1) instantiate the generator and discriminator, making sure that the generator is roughly a quarter to a half of the size of the discriminator
generator = ReformerLM (
num_tokens = 20000 ,
emb_dim = 128 ,
dim = 256 , # smaller hidden dimension
heads = 4 , # less heads
ff_mult = 2 , # smaller feed forward intermediate dimension
dim_head = 64 ,
depth = 12 ,
max_seq_len = 1024
)
discriminator = ReformerLM (
num_tokens = 20000 ,
emb_dim = 128 ,
dim = 1024 ,
dim_head = 64 ,
heads = 16 ,
depth = 12 ,
ff_mult = 4 ,
max_seq_len = 1024 ,
return_embeddings = True
)
# (2) weight tie the token and positional embeddings of generator and discriminator
generator . token_emb = discriminator . token_emb
generator . pos_emb = discriminator . pos_emb
# weight tie any other embeddings if available, token type embeddings, etc.
# (3) instantiate electra
discriminator_with_adapter = nn . Sequential ( discriminator , nn . Linear ( 1024 , 1 ))
trainer = Electra (
generator ,
discriminator_with_adapter ,
mask_token_id = 2 , # the token id reserved for masking
pad_token_id = 0 , # the token id for padding
mask_prob = 0.15 , # masking probability for masked language modeling
mask_ignore_token_ids = [] # ids of tokens to ignore for mask modeling ex. (cls, sep)
)
# (4) train
data = torch . randint ( 0 , 20000 , ( 1 , 1024 ))
results = trainer ( data )
results . loss . backward ()
# after much training, the discriminator should have improved
torch . save ( discriminator , f'./pretrained-model.pt' )
Le générateur doit mesurer environ le quart à la moitié au plus de la taille du discriminateur pour un entraînement efficace. Si la valeur est supérieure, le générateur sera trop performant et le jeu contradictoire s'effondrera. Cela a été fait en réduisant la dimension cachée, la dimension cachée de rétroaction et le nombre de têtes d'attention dans le document.
$ python setup.py test
$ mkdir data
$ cd data
$ pip3 install gdown
$ gdown --id 1EA5V0oetDCOke7afsktL_JDQ-ETtNOvx
$ tar -xf openwebtext.tar.xz
$ wget https://storage.googleapis.com/electra-data/vocab.txt
$ cd ..
$ python pretraining/openwebtext/preprocess.py
$ python pretraining/openwebtext/pretrain.py
$ python examples/glue/download.py
$ python examples/glue/run.py --model_name_or_path output/yyyy-mm-dd-hh-mm-ss/ckpt/200000
@misc { clark2020electra ,
title = { ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators } ,
author = { Kevin Clark and Minh-Thang Luong and Quoc V. Le and Christopher D. Manning } ,
year = { 2020 } ,
eprint = { 2003.10555 } ,
archivePrefix = { arXiv } ,
primaryClass = { cs.CL }
}