Vicuna LoRA RLHF PyTorch
1.0.0
消費者向けハードウェアで LoRA および RLHF を使用して Vicuna LLM を微調整するための完全なパイプライン
穷人卡:2080Ti 12G
torch==2.0.0
cuda==11.8
python apply_delta.py --base ' decapoda-research/llama-7b-hf ' --target ' ./weights/vicuna-7b ' --delta lmsys/vicuna-7b-delta-v1.1
最初にsrc/peft/utils/save_and_load.pyを確認してください。行 52 のみをコメント化してください。
# #to_return = {k: v for k, v in to_return.items() if (("lora_" in k and adapter_name in k) or ("bias" in k))}
それから走ります
python supervised_finetune.py --data_path ' ./data/merge_sample.json ' --output_path ' lora-Vicuna ' --model_path ' ./weights/vicuna-7b ' --eval_steps 200 --save_steps 200 --test_size 1
まず peft のバージョンを確認してください。peft が 0.2.0 でない場合は、peft==0.2.0 をインストールする必要があります。
pip uninstall peft -y
pip install peft==0.2.0 # 0.3.0.dev0 has many errors
python merge_peft_adapter.py --model_name ' lora-Vicuna '
pip uninstall peft -y
pip install git+https://github.com/huggingface/peft.git # then comments peft/utis/save_and_load.py line 52.
python train_reward_model.py --model_name ' ./weights/vicuna-7b ' --gradient_accumulation_steps 32 --per_device_train_batch_size 1 --train_subset 100 --eval_subset 10 --local_rank 0 --bf16 False
python merge_peft_adapter.py --model_name ./reward_model_vicuna-7b
python tuning_lm_with_rl.py --model_name ' ./lora-Vicuna-adapter-merged ' --reward_model_name ' ./reward_model_vicuna-7b-adapter-merged ' --adafactor False --tokenizer_name ' decapoda-research/llama-7b-hf ' --save_freq 100 --output_max_length 128 --batch_size 1 --gradient_accumulation_steps 1 --batched_gen True --ppo_epochs 1 --seed 0 --learning_rate 1.4e-5 --early_stopping True --output_dir ' ./tuning_llama_rl_checkpoints '
value
が必要です。必要に応じて参照してください。 Transformer の github で公開この問題は 8 時間前に修正されました。apply_delta.py は FastChat から来ました。
要件は主に alpaca-lora に準拠した環境です。
このプロジェクトが開発時間を短縮するのに役立つ場合は、コーヒーを一杯ください :)
AliPay(支付宝)
WechatPay(微信)
MIT © クン