agents flex
v1.0.0-rc.1
OpenAi LLM を使用します。
@ Test
public void testChat () {
OpenAiLlmConfig config = new OpenAiLlmConfig ();
config . setApiKey ( "sk-rts5NF6n*******" );
Llm llm = new OpenAiLlm ( config );
String response = llm . chat ( "what is your name?" );
System . out . println ( response );
}
Qwen LLM を使用します。
@ Test
public void testChat () {
QwenLlmConfig config = new QwenLlmConfig ();
config . setApiKey ( "sk-28a6be3236****" );
config . setModel ( "qwen-turbo" );
Llm llm = new QwenLlm ( config );
String response = llm . chat ( "what is your name?" );
System . out . println ( response );
}
SparkAi LLM を使用します。
@ Test
public void testChat () {
SparkLlmConfig config = new SparkLlmConfig ();
config . setAppId ( "****" );
config . setApiKey ( "****" );
config . setApiSecret ( "****" );
Llm llm = new SparkLlm ( config );
String response = llm . chat ( "what is your name?" );
System . out . println ( response );
}
public static void main ( String [] args ) {
SparkLlmConfig config = new SparkLlmConfig ();
config . setAppId ( "****" );
config . setApiKey ( "****" );
config . setApiSecret ( "****" );
Llm llm = new SparkLlm ( config );
HistoriesPrompt prompt = new HistoriesPrompt ();
System . out . println ( "ask for something..." );
Scanner scanner = new Scanner ( System . in );
String userInput = scanner . nextLine ();
while ( userInput != null ) {
prompt . addMessage ( new HumanMessage ( userInput ));
llm . chatStream ( prompt , ( context , response ) -> {
System . out . println ( ">>>> " + response . getMessage (). getContent ());
});
userInput = scanner . nextLine ();
}
}
public class WeatherUtil {
@ FunctionDef ( name = "get_the_weather_info" , description = "get the weather info" )
public static String getWeatherInfo (
@ FunctionParam ( name = "city" , description = "the city name" ) String name
) {
//we should invoke the third part api for weather info here
return "Today it will be dull and overcast in " + name ;
}
}
public static void main ( String [] args ) {
OpenAiLlmConfig config = new OpenAiLlmConfig ();
config . setApiKey ( "sk-rts5NF6n*******" );
OpenAiLlm llm = new OpenAiLlm ( config );
FunctionPrompt prompt = new FunctionPrompt ( "How is the weather in Beijing today?" , WeatherUtil . class );
FunctionResultResponse response = llm . chat ( prompt );
Object result = response . getFunctionResult ();
System . out . println ( result );
//Today it will be dull and overcast in Beijing
}