Pytorch 1.5 で更新されました
ここでコードを見つけることができます
Pytorch は、ML モデルを作成するスマートな方法を提供するオープンソースの深層学習フレームワークです。たとえドキュメントがきちんと作られていたとしても、ほとんどの人は PyTorch でうまく整理されたコードを書いていないことがわかります。
今日は、PyTorch の 3 つの主要な構成要素であるModule, Sequential and ModuleList
の使用方法を見ていきます。まずは例から始めて、繰り返して改善していきます。
これら 4 つのクラスはすべてtorch.nn
に含まれています
import torch . nn as nn
# nn.Module
# nn.Sequential
# nn.Module
モジュールは主要な構成要素であり、すべてのニューラル ネットワークの基本クラスを定義するため、それをサブクラス化する必要があります。
例として、古典的な CNN 分類器を作成してみましょう。
import torch . nn . functional as F
class MyCNNClassifier ( nn . Module ):
def __init__ ( self , in_c , n_classes ):
super (). __init__ ()
self . conv1 = nn . Conv2d ( in_c , 32 , kernel_size = 3 , stride = 1 , padding = 1 )
self . bn1 = nn . BatchNorm2d ( 32 )
self . conv2 = nn . Conv2d ( 32 , 64 , kernel_size = 3 , stride = 1 , padding = 1 )
self . bn2 = nn . BatchNorm2d ( 64 )
self . fc1 = nn . Linear ( 64 * 28 * 28 , 1024 )
self . fc2 = nn . Linear ( 1024 , n_classes )
def forward ( self , x ):
x = self . conv1 ( x )
x = self . bn1 ( x )
x = F . relu ( x )
x = self . conv2 ( x )
x = self . bn2 ( x )
x = F . relu ( x )
x = x . view ( x . size ( 0 ), - 1 ) # flat
x = self . fc1 ( x )
x = F . sigmoid ( x )
x = self . fc2 ( x )
return x
model = MyCNNClassifier ( 1 , 10 )
print ( model )
MyCNNClassifier(
(conv1): Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(bn1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(fc1): Linear(in_features=50176, out_features=1024, bias=True)
(fc2): Linear(in_features=1024, out_features=10, bias=True)
)
これは、3x3 convs + patchnorm + relu の 2 つの層を使用するエンコード部分と、2 つの線形層を含むデコード部分を備えた非常に単純な分類器です。 PyTorch を初めて使用する場合は、このタイプのコーディングを以前に見たことがあるかもしれませんが、2 つの問題があります。
レイヤーを追加したい場合は、 __init__
とforward
関数に再び大量のコードを記述する必要があります。また、別のモデルで使用したい共通のブロックがある場合 (例: 3x3 conv + patchnorm + relu)、それを再度作成する必要があります。
Sequential は、積み重ねて同時に実行できるモジュールのコンテナです。
すべてをself
中に蓄えなければならないことに気づくでしょう。 Sequential
使用してコードを改善できます。
class MyCNNClassifier ( nn . Module ):
def __init__ ( self , in_c , n_classes ):
super (). __init__ ()
self . conv_block1 = nn . Sequential (
nn . Conv2d ( in_c , 32 , kernel_size = 3 , stride = 1 , padding = 1 ),
nn . BatchNorm2d ( 32 ),
nn . ReLU ()
)
self . conv_block2 = nn . Sequential (
nn . Conv2d ( 32 , 64 , kernel_size = 3 , stride = 1 , padding = 1 ),
nn . BatchNorm2d ( 64 ),
nn . ReLU ()
)
self . decoder = nn . Sequential (
nn . Linear ( 64 * 28 * 28 , 1024 ),
nn . Sigmoid (),
nn . Linear ( 1024 , n_classes )
)
def forward ( self , x ):
x = self . conv_block1 ( x )
x = self . conv_block2 ( x )
x = x . view ( x . size ( 0 ), - 1 ) # flat
x = self . decoder ( x )
return x
model = MyCNNClassifier ( 1 , 10 )
print ( model )
MyCNNClassifier(
(conv_block1): Sequential(
(0): Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(conv_block2): Sequential(
(0): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(decoder): Sequential(
(0): Linear(in_features=50176, out_features=1024, bias=True)
(1): Sigmoid()
(2): Linear(in_features=1024, out_features=10, bias=True)
)
)
ずっと良くなりましたね?
conv_block1
とconv_block2
ほぼ同じに見えることに気づきましたか? nn.Sequential
を返す関数を作成してコードを簡素化することもできます。
def conv_block ( in_f , out_f , * args , ** kwargs ):
return nn . Sequential (
nn . Conv2d ( in_f , out_f , * args , ** kwargs ),
nn . BatchNorm2d ( out_f ),
nn . ReLU ()
)
その後、モジュール内でこの関数を呼び出すだけです。
class MyCNNClassifier ( nn . Module ):
def __init__ ( self , in_c , n_classes ):
super (). __init__ ()
self . conv_block1 = conv_block ( in_c , 32 , kernel_size = 3 , padding = 1 )
self . conv_block2 = conv_block ( 32 , 64 , kernel_size = 3 , padding = 1 )
self . decoder = nn . Sequential (
nn . Linear ( 64 * 28 * 28 , 1024 ),
nn . Sigmoid (),
nn . Linear ( 1024 , n_classes )
)
def forward ( self , x ):
x = self . conv_block1 ( x )
x = self . conv_block2 ( x )
x = x . view ( x . size ( 0 ), - 1 ) # flat
x = self . decoder ( x )
return x
model = MyCNNClassifier ( 1 , 10 )
print ( model )
MyCNNClassifier(
(conv_block1): Sequential(
(0): Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(conv_block2): Sequential(
(0): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(decoder): Sequential(
(0): Linear(in_features=50176, out_features=1024, bias=True)
(1): Sigmoid()
(2): Linear(in_features=1024, out_features=10, bias=True)
)
)
さらにきれいに!それでもconv_block1
とconv_block2
はほぼ同じです。 nn.Sequential
使用してそれらをマージできます。
class MyCNNClassifier ( nn . Module ):
def __init__ ( self , in_c , n_classes ):
super (). __init__ ()
self . encoder = nn . Sequential (
conv_block ( in_c , 32 , kernel_size = 3 , padding = 1 ),
conv_block ( 32 , 64 , kernel_size = 3 , padding = 1 )
)
self . decoder = nn . Sequential (
nn . Linear ( 64 * 28 * 28 , 1024 ),
nn . Sigmoid (),
nn . Linear ( 1024 , n_classes )
)
def forward ( self , x ):
x = self . encoder ( x )
x = x . view ( x . size ( 0 ), - 1 ) # flat
x = self . decoder ( x )
return x
model = MyCNNClassifier ( 1 , 10 )
print ( model )
MyCNNClassifier(
(encoder): Sequential(
(0): Sequential(
(0): Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(1): Sequential(
(0): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
)
(decoder): Sequential(
(0): Linear(in_features=50176, out_features=1024, bias=True)
(1): Sigmoid()
(2): Linear(in_features=1024, out_features=10, bias=True)
)
)
self.encoder
ブースconv_block
保持するようになりました。モデルのロジックを分離し、読みやすく再利用しやすくしました。 conv_block
関数は、別のモデルにインポートして使用できます。
self.encoder
に新しいレイヤーを追加できるとしたらどうしますか。ハードコーディングするのは不便です。
self . encoder = nn . Sequential (
conv_block ( in_c , 32 , kernel_size = 3 , padding = 1 ),
conv_block ( 32 , 64 , kernel_size = 3 , padding = 1 ),
conv_block ( 64 , 128 , kernel_size = 3 , padding = 1 ),
conv_block ( 128 , 256 , kernel_size = 3 , padding = 1 ),
)
サイズを配列として定義して、各レイヤーを記述することなくすべてのレイヤーを自動的に作成できたら便利ですよね?幸いなことに、配列を作成してSequential
に渡すことができます。
class MyCNNClassifier ( nn . Module ):
def __init__ ( self , in_c , n_classes ):
super (). __init__ ()
self . enc_sizes = [ in_c , 32 , 64 ]
conv_blocks = [ conv_block ( in_f , out_f , kernel_size = 3 , padding = 1 )
for in_f , out_f in zip ( self . enc_sizes , self . enc_sizes [ 1 :])]
self . encoder = nn . Sequential ( * conv_blocks )
self . decoder = nn . Sequential (
nn . Linear ( 64 * 28 * 28 , 1024 ),
nn . Sigmoid (),
nn . Linear ( 1024 , n_classes )
)
def forward ( self , x ):
x = self . encoder ( x )
x = x . view ( x . size ( 0 ), - 1 ) # flat
x = self . decoder ( x )
return x
model = MyCNNClassifier ( 1 , 10 )
print ( model )
MyCNNClassifier(
(encoder): Sequential(
(0): Sequential(
(0): Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(1): Sequential(
(0): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
)
(decoder): Sequential(
(0): Linear(in_features=50176, out_features=1024, bias=True)
(1): Sigmoid()
(2): Linear(in_features=1024, out_features=10, bias=True)
)
)
分解してみましょう。エンコーダーのサイズを保持する配列self.enc_sizes
を作成しました。次に、サイズを反復して配列conv_blocks
を作成します。ブースに各レイヤーのイン サイズとアウトサイズを指定する必要があるため、size 配列を 1 つずらしてそれ自体でzip
圧縮しました。
明確にするために、次の例を見てください。
sizes = [ 1 , 32 , 64 ]
for in_f , out_f in zip ( sizes , sizes [ 1 :]):
print ( in_f , out_f )
1 32
32 64
次に、 Sequential
リストを受け入れないため、 *
演算子を使用してリストを分解します。
タダ!サイズを追加したいだけの場合は、リストに新しい数値を簡単に追加できます。サイズをパラメータにするのが一般的です。
class MyCNNClassifier ( nn . Module ):
def __init__ ( self , in_c , enc_sizes , n_classes ):
super (). __init__ ()
self . enc_sizes = [ in_c , * enc_sizes ]
conv_blocks = [ conv_block ( in_f , out_f , kernel_size = 3 , padding = 1 )
for in_f , out_f in zip ( self . enc_sizes , self . enc_sizes [ 1 :])]
self . encoder = nn . Sequential ( * conv_blocks )
self . decoder = nn . Sequential (
nn . Linear ( 64 * 28 * 28 , 1024 ),
nn . Sigmoid (),
nn . Linear ( 1024 , n_classes )
)
def forward ( self , x ):
x = self . encoder ( x )
x = x . view ( x . size ( 0 ), - 1 ) # flat
x = self . decoder ( x )
return x
model = MyCNNClassifier ( 1 , [ 32 , 64 , 128 ], 10 )
print ( model )
MyCNNClassifier(
(encoder): Sequential(
(0): Sequential(
(0): Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(1): Sequential(
(0): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(2): Sequential(
(0): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
)
(decoder): Sequential(
(0): Linear(in_features=50176, out_features=1024, bias=True)
(1): Sigmoid()
(2): Linear(in_features=1024, out_features=10, bias=True)
)
)
デコーダ部分でも同じことができます
def dec_block ( in_f , out_f ):
return nn . Sequential (
nn . Linear ( in_f , out_f ),
nn . Sigmoid ()
)
class MyCNNClassifier ( nn . Module ):
def __init__ ( self , in_c , enc_sizes , dec_sizes , n_classes ):
super (). __init__ ()
self . enc_sizes = [ in_c , * enc_sizes ]
self . dec_sizes = [ 64 * 28 * 28 , * dec_sizes ]
conv_blocks = [ conv_block ( in_f , out_f , kernel_size = 3 , padding = 1 )
for in_f , out_f in zip ( self . enc_sizes , self . enc_sizes [ 1 :])]
self . encoder = nn . Sequential ( * conv_blocks )
dec_blocks = [ dec_block ( in_f , out_f )
for in_f , out_f in zip ( self . dec_sizes , self . dec_sizes [ 1 :])]
self . decoder = nn . Sequential ( * dec_blocks )
self . last = nn . Linear ( self . dec_sizes [ - 1 ], n_classes )
def forward ( self , x ):
x = self . encoder ( x )
x = x . view ( x . size ( 0 ), - 1 ) # flat
x = self . decoder ( x )
return x
model = MyCNNClassifier ( 1 , [ 32 , 64 ], [ 1024 , 512 ], 10 )
print ( model )
MyCNNClassifier(
(encoder): Sequential(
(0): Sequential(
(0): Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(1): Sequential(
(0): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
)
(decoder): Sequential(
(0): Sequential(
(0): Linear(in_features=50176, out_features=1024, bias=True)
(1): Sigmoid()
)
(1): Sequential(
(0): Linear(in_features=1024, out_features=512, bias=True)
(1): Sigmoid()
)
)
(last): Linear(in_features=512, out_features=10, bias=True)
)
同じパターンに従い、デコード部分に線形 + シグモイドの新しいブロックを作成し、サイズを含む配列を渡します。出力をアクティブにしたくないため、 self.last
を追加する必要がありました。
これで、モデルを 2 つに分解することもできます。エンコーダー + デコーダー
class MyEncoder ( nn . Module ):
def __init__ ( self , enc_sizes ):
super (). __init__ ()
self . conv_blocks = nn . Sequential ( * [ conv_block ( in_f , out_f , kernel_size = 3 , padding = 1 )
for in_f , out_f in zip ( enc_sizes , enc_sizes [ 1 :])])
def forward ( self , x ):
return self . conv_blocks ( x )
class MyDecoder ( nn . Module ):
def __init__ ( self , dec_sizes , n_classes ):
super (). __init__ ()
self . dec_blocks = nn . Sequential ( * [ dec_block ( in_f , out_f )
for in_f , out_f in zip ( dec_sizes , dec_sizes [ 1 :])])
self . last = nn . Linear ( dec_sizes [ - 1 ], n_classes )
def forward ( self , x ):
return self . dec_blocks ()
class MyCNNClassifier ( nn . Module ):
def __init__ ( self , in_c , enc_sizes , dec_sizes , n_classes ):
super (). __init__ ()
self . enc_sizes = [ in_c , * enc_sizes ]
self . dec_sizes = [ self . enc_sizes [ - 1 ] * 28 * 28 , * dec_sizes ]
self . encoder = MyEncoder ( self . enc_sizes )
self . decoder = MyDecoder ( self . dec_sizes , n_classes )
def forward ( self , x ):
x = self . encoder ( x )
x = x . flatten ( 1 ) # flat
x = self . decoder ( x )
return x
model = MyCNNClassifier ( 1 , [ 32 , 64 ], [ 1024 , 512 ], 10 )
print ( model )
MyCNNClassifier(
(encoder): MyEncoder(
(conv_blocks): Sequential(
(0): Sequential(
(0): Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(1): Sequential(
(0): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
)
)
(decoder): MyDecoder(
(dec_blocks): Sequential(
(0): Sequential(
(0): Linear(in_features=50176, out_features=1024, bias=True)
(1): Sigmoid()
)
(1): Sequential(
(0): Linear(in_features=1024, out_features=512, bias=True)
(1): Sigmoid()
)
)
(last): Linear(in_features=512, out_features=10, bias=True)
)
)
MyEncoder
とMyDecoder
nn.Sequential
返す関数である可能性があることに注意してください。私は最初のパターンをモデルに使用し、2 番目のパターンをビルディング ブロックに使用することを好みます。
モジュールをサブモジュールに分割すると、コードの共有、デバッグ、テストが容易になります。
ModuleList
使用すると、 Module
リストとして保存できます。 U-net のように、レイヤーを反復処理して情報を保存/使用する必要がある場合に便利です。
Sequential
との主な違いは、 ModuleList
forward
メソッドがないため、内部層が接続されていないことです。デコーダの各層の各出力が必要であると仮定すると、次のようにして保存できます。
class MyModule ( nn . Module ):
def __init__ ( self , sizes ):
super (). __init__ ()
self . layers = nn . ModuleList ([ nn . Linear ( in_f , out_f ) for in_f , out_f in zip ( sizes , sizes [ 1 :])])
self . trace = []
def forward ( self , x ):
for layer in self . layers :
x = layer ( x )
self . trace . append ( x )
return x
model = MyModule ([ 1 , 16 , 32 ])
import torch
model ( torch . rand (( 4 , 1 )))
[ print ( trace . shape ) for trace in model . trace ]
torch.Size([4, 16])
torch.Size([4, 32])
[None, None]
conv_block
でLearkyRelu
に切り替えたい場合はどうすればよいでしょうか? ModuleDict
使用してModule
の辞書を作成し、必要に応じてModule
動的に切り替えることができます。
def conv_block ( in_f , out_f , activation = 'relu' , * args , ** kwargs ):
activations = nn . ModuleDict ([
[ 'lrelu' , nn . LeakyReLU ()],
[ 'relu' , nn . ReLU ()]
])
return nn . Sequential (
nn . Conv2d ( in_f , out_f , * args , ** kwargs ),
nn . BatchNorm2d ( out_f ),
activations [ activation ]
)
print ( conv_block ( 1 , 32 , 'lrelu' , kernel_size = 3 , padding = 1 ))
print ( conv_block ( 1 , 32 , 'relu' , kernel_size = 3 , padding = 1 ))
Sequential(
(0): Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
Sequential(
(0): Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
すべてをまとめてみましょう!
def conv_block ( in_f , out_f , activation = 'relu' , * args , ** kwargs ):
activations = nn . ModuleDict ([
[ 'lrelu' , nn . LeakyReLU ()],
[ 'relu' , nn . ReLU ()]
])
return nn . Sequential (
nn . Conv2d ( in_f , out_f , * args , ** kwargs ),
nn . BatchNorm2d ( out_f ),
activations [ activation ]
)
def dec_block ( in_f , out_f ):
return nn . Sequential (
nn . Linear ( in_f , out_f ),
nn . Sigmoid ()
)
class MyEncoder ( nn . Module ):
def __init__ ( self , enc_sizes , * args , ** kwargs ):
super (). __init__ ()
self . conv_blocks = nn . Sequential ( * [ conv_block ( in_f , out_f , kernel_size = 3 , padding = 1 , * args , ** kwargs )
for in_f , out_f in zip ( enc_sizes , enc_sizes [ 1 :])])
def forward ( self , x ):
return self . conv_blocks ( x )
class MyDecoder ( nn . Module ):
def __init__ ( self , dec_sizes , n_classes ):
super (). __init__ ()
self . dec_blocks = nn . Sequential ( * [ dec_block ( in_f , out_f )
for in_f , out_f in zip ( dec_sizes , dec_sizes [ 1 :])])
self . last = nn . Linear ( dec_sizes [ - 1 ], n_classes )
def forward ( self , x ):
return self . dec_blocks ()
class MyCNNClassifier ( nn . Module ):
def __init__ ( self , in_c , enc_sizes , dec_sizes , n_classes , activation = 'relu' ):
super (). __init__ ()
self . enc_sizes = [ in_c , * enc_sizes ]
self . dec_sizes = [ 32 * 28 * 28 , * dec_sizes ]
self . encoder = MyEncoder ( self . enc_sizes , activation = activation )
self . decoder = MyDecoder ( dec_sizes , n_classes )
def forward ( self , x ):
x = self . encoder ( x )
x = x . flatten ( 1 ) # flat
x = self . decoder ( x )
return x
model = MyCNNClassifier ( 1 , [ 32 , 64 ], [ 1024 , 512 ], 10 , activation = 'lrelu' )
print ( model )
MyCNNClassifier(
(encoder): MyEncoder(
(conv_blocks): Sequential(
(0): Sequential(
(0): Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
(1): Sequential(
(0): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
)
)
)
(decoder): MyDecoder(
(dec_blocks): Sequential(
(0): Sequential(
(0): Linear(in_features=1024, out_features=512, bias=True)
(1): Sigmoid()
)
)
(last): Linear(in_features=512, out_features=10, bias=True)
)
)
ということで、要約すると。
Module
を使用します。Sequential
を使用します。ModuleList
を使用します。ModuleDict
使用します。以上です!
読んでいただきありがとうございます