提案されている CoLT5 アーキテクチャにおける条件付きルーティングの効率的なアテンションの Pytorch での実装。
彼らは、この論文の座標降下法 (Wright らの主なアルゴリズム) を使用して、フィードフォワード ブロックとアテンション ブロックの「より重い」分岐にトークンのサブセットをルーティングしました。
更新: Key-Value のルーティング正規化スコアがどのように使用されるかは不明です。そこで即興で予測値をスケーリングしましたが、答えがわかっていると思われる場合は、問題を開いてください。
アップデート 2: 上記の即興演奏はうまく機能するようです
Stability.ai は最先端の人工知能研究に取り組むための寛大なスポンサーシップを提供しています
私の生活を楽にしてくれたeinops
Triton のおかげで、わずか 2 日で融合実装を使用して座標降下を高速化し、1,000 行の CUDA コードを記述する必要がなくなりました。
$ pip install colt5-attention
import torch
from colt5_attention import (
ConditionalRoutedFeedForward ,
ConditionalRoutedAttention ,
ConditionalRoutedTransformerBlock
)
# mock input, say it is 32768 length
tokens = torch . randn ( 2 , 32768 , 512 )
mask = torch . ones ( 2 , 32768 ). bool () # can handle variable lengthed sequences
# feedforward
ff = ConditionalRoutedFeedForward (
dim = 512 ,
light_ff_mult = 0.5 , # hidden dimension ratio of light branch
heavy_ff_mult = 4 , # hidden dimension ratio of heavy branch
num_heavy_tokens = 1024 # heavy branch receives only 1024 routed tokens of 32768
)
ff_out = ff ( tokens , mask = mask ) # (2, 32768, 512) - light and heavy branch summed
# attention
attn = ConditionalRoutedAttention (
dim = 512 ,
light_dim_head = 64 , # attention head dimension of light branch
light_heads = 8 , # number of attention heads for light branch
light_window_size = 128 , # local attention receptive field for light
heavy_dim_head = 64 , # attention head dimension of heavy branch
heavy_heads = 8 , # number of attention heads for heavy branch
num_heavy_tokens_q = 1024 , # heavy branch receives only 1024 routed tokens of 32768
num_heavy_tokens_kv = 1024 # heavy branch receives only 1024 routed tokens of 32768
)
attn_out = attn ( tokens , mask = mask ) # (2, 32768, 512) - light and heavy branch summed
# both attention and feedforward with residual
# the complete transformer block
# a stack of these would constitute the encoder of CoLT5
block = ConditionalRoutedTransformerBlock (
dim = 512 ,
light_dim_head = 64 ,
light_heads = 8 ,
light_window_size = 128 ,
heavy_dim_head = 64 ,
heavy_heads = 8 ,
light_ff_mult = 0.5 ,
heavy_ff_mult = 4 ,
num_heavy_ff_tokens = 1024 ,
num_heavy_attn_tokens_q = 1024 ,
num_heavy_attn_tokens_kv = 1024
)
block_out = block ( tokens , mask = mask ) # (2, 32768, 512)
また、transtention-xl の長いコンテキスト メモリで試行できる、クロス アテンション用の条件付きルーティング アテンションのバリエーションも含まれています。
import torch
from colt5_attention import ConditionalRoutedCrossAttention
# mock input, let us say it is a transformer of 1024 length attending to 1 million context past memories
tokens = torch . randn ( 1 , 1024 , 512 ). cuda ()
tokens_mask = torch . ones ( 1 , 1024 ). bool (). cuda ()
memories = torch . randn ( 1 , 1_048_576 , 512 ). cuda ()
memories_mask = torch . ones ( 1 , 1_048_576 ). bool (). cuda ()
# conditionally routed cross attention
cross_attn = ConditionalRoutedCrossAttention (
dim = 512 ,
dim_head = 64 ,
heads = 8 ,
num_tokens_q = 512 , # only 512 routed from 1024
num_tokens_kv = 1024 , # only 1024 routed from 1 million
kv_routing_tokens = 2 , # say you want 2 routing tokens to route different sets of key / values to the queries. 4 attention heads will be allocated to each routed set in this example (8 / 2)
use_triton = True , # use cuda kernel
route_block_size = 131072 # route in blocks of 131072
). cuda ()
cross_attn_out = cross_attn (
tokens ,
context = memories ,
mask = tokens_mask ,
context_mask = memories_mask
)
cross_attn_out . shape # (1, 1024, 512) - same as tokens
このリポジトリには、自己回帰的注意のための即席バージョンも含まれています。これを実現する方法は、ウィンドウでシーケンスを表示することでした。各ウィンドウは、過去のキー/値のウィンドウのみを処理できます。ライト ブランチのローカル アテンションは、ウィンドウ内のアテンションをカバーします。
座標降下は、Triton で書かれた CUDA カーネルを通じて実行可能になります。最後に、自己回帰生成を適切に機能させるには、ルーティングされていないトークン (クエリ用) が単なるゼロではなく、学習された出力埋め込みを出力することを確認する必要がありました。
現在、反復数が 20 を超えると、勾配間に時折差異が見られます (ごく一部の要素で 1e-1 に達することもあります)。ただし、enwik8 は適切にトレーニングされているようで、ルーティングの効果が確認できます。トレーニングも驚くほど安定しています
元。
import torch
from colt5_attention import ConditionalRoutedAutoregressiveAttention
# mock input, say it is 8192 length
tokens = torch . randn ( 2 , 8192 , 512 ). cuda ()
# attention
attn = ConditionalRoutedAutoregressiveAttention (
dim = 512 ,
light_dim_head = 64 , # attention head dimension of light branch
light_heads = 8 , # number of attention heads for light branch
light_window_size = 128 , # local attention receptive field for light
heavy_window_size = 128 , # the windowing for the routed heavy attention, by default, will be equal to the light window size. be aware if this is any greater than the light window size, there may be tokens that would be missed by attention
heavy_dim_head = 64 , # attention head dimension of heavy branch
heavy_heads = 8 , # number of attention heads for heavy branch
num_heavy_tokens_q = 32 , # heavy branch receives only 32 out of 128 of the windowed queries (1024 query tokens total)
num_heavy_tokens_kv = 1024 , # heavy branch receives only 1024 routed tokens for key-values
num_routed_kv = 2 , # one can split the attention heads so that groups of heads attend to different sets of key - values (2 routing tokens in this case)
use_triton = True , # will need to use Triton for this to be viable, otherwise it is too slow and memory efficient with the number of iterations
use_flash_attn = True # use flash attention in heavy branch
). cuda ()
attn_out = attn ( tokens ) + tokens # (2, 8192, 512) - output of attention with residual (prenorm is included)
最後に、このリポジトリには画像特徴マップのバージョンが含まれています。通常、多くの研究論文は、32 x 32 を超えるサイズの画像特徴マップに対してアテンションを実行できません。このルーティングされたアテンションでは、軽いブランチにはローカル ウィンドウ パッチが使用され、重いブランチにはルーティングされたアテンションが使用されます。
元。
import torch
from colt5_attention import ConditionalRoutedImageAttention
attn = ConditionalRoutedImageAttention (
dim = 32 ,
light_dim_head = 64 , # attention head dimension of light branch
light_heads = 8 , # number of attention heads for light branch
light_window_size = 32 , # height and width of local window attention on the image feature map
channel_first = True , # whether to accept images with channel first than last
heavy_dim_head = 64 , # attention head dimension of heavy branch
heavy_heads = 8 , # number of attention heads for heavy branch
num_heavy_tokens_q = 1024 , # heavy branch receives only 1024 routed tokens of 65536
num_heavy_tokens_kv = 1024 # heavy branch receives only 1024 routed tokens of 65536
). cuda ()
fmap = torch . randn ( 1 , 32 , 256 , 256 ). cuda () # image feature map is too large for attention, given 256 ^ 2 == 65536 tokens
out = attn ( fmap )
座標降下ルーティングによる注意とフィードフォワードを使用したシンプルな ViT
import torch
from colt5_attention . vit import ConditionalRoutedViT
vit = ConditionalRoutedViT (
image_size = 256 , # image size
patch_size = 32 , # patch size
num_classes = 1000 , # number of output classes
dim = 1024 , # feature dimension
depth = 6 , # depth
attn_num_heavy_tokens_q = 16 , # number of routed queries for heavy attention
attn_num_heavy_tokens_kv = 16 , # number of routed key/values for heavy attention
attn_heavy_dim_head = 64 , # dimension per attention head for heavy
attn_heavy_heads = 8 , # number of attention heads for heavy
attn_light_window_size = 4 , # the local windowed attention for light branch
attn_light_dim_head = 32 , # dimension per head for local light attention
attn_light_heads = 4 , # number of attention heads for local windowed attention
ff_num_heavy_tokens = 16 , # number of tokens routed for heavy feedforward
ff_heavy_mult = 4 , # the expansion factor of the heavy feedforward branch
ff_light_mult = 2 # expansion factor of the light feedforward branch
)
images = torch . randn ( 1 , 3 , 256 , 256 )
logits = vit ( images ) # (1, 1000)
微分可能なtopk
の座標降下に小さなラッパーを使用する
import torch
from colt5_attention import topk
x = torch . randn ( 1024 , 512 )
values , indices , coor_descent_values , gates = topk ( x , k = 10 , fused = True )
# you can either use the topk indices + gates, or use the values directly (values have already been multiplied with the gates within the function)
@inproceedings { Ainslie2023CoLT5FL ,
title = { CoLT5: Faster Long-Range Transformers with Conditional Computation } ,
author = { Joshua Ainslie and Tao Lei and Michiel de Jong and Santiago Ontan'on and Siddhartha Brahma and Yury Zemlyanskiy and David Uthus and Mandy Guo and James Lee-Thorp and Yi Tay and Yun-Hsuan Sung and Sumit Sanghai } ,
year = { 2023 }
}
@article { Tillet2019TritonAI ,
title = { Triton: an intermediate language and compiler for tiled neural network computations } ,
author = { Philippe Tillet and H. Kung and D. Cox } ,
journal = { Proceedings of the 3rd ACM SIGPLAN International Workshop on Machine Learning and Programming Languages } ,
year = { 2019 }
}
@inproceedings { dao2022flashattention ,
title = { Flash{A}ttention: Fast and Memory-Efficient Exact Attention with {IO}-Awareness } ,
author = { Dao, Tri and Fu, Daniel Y. and Ermon, Stefano and Rudra, Atri and R{'e}, Christopher } ,
booktitle = { Advances in Neural Information Processing Systems } ,
year = { 2022 }
}
@article { Lei2023ConditionalAP ,
title = { Conditional Adapters: Parameter-efficient Transfer Learning with Fast Inference } ,
author = { Tao Lei and Junwen Bai and Siddhartha Brahma and Joshua Ainslie and Kenton Lee and Yanqi Zhou and Nan Du and Vincent Zhao and Yuexin Wu and Bo Li and Yu Zhang and Ming-Wei Chang } ,
journal = { ArXiv } ,
year = { 2023 } ,
volume = { abs/2304.04947 }
}
@article { Beyer2022BetterPV ,
title = { Better plain ViT baselines for ImageNet-1k } ,
author = { Lucas Beyer and Xiaohua Zhai and Alexander Kolesnikov } ,
journal = { ArXiv } ,
year = { 2022 } ,
volume = { abs/2205.01580 }
}