注記
このレポは2019年に作成され、ここで提供される質問は、当時のJavaScriptの構文と動作に基づいています。 JavaScriptは絶えず進化する言語であるため、ここでは質問ではカバーされていない新しい言語機能があります。
BasicからAdvancedまで:JavaScriptをよく知っているか、知識を少し更新するか、コーディングインタビューの準備をしてください! ?このレポは、新しい質問で定期的に更新します。質問の下に**崩壊したセクション**に答えを追加しました。それらをクリックして展開します。それはただ楽しみのためです、頑張ってください! ❤❤️
お気軽にご連絡ください! ?
Instagram || Twitter || LinkedIn ||ブログ
プロジェクトで自由に使用してください! ?私はこのレポへの参照を本当に感謝します、私は質問と説明を作成します(はい、私は悲しいです)。 ??ありがとう、そして楽しんでください! |
---|
function sayHi ( ) {
console . log ( name ) ;
console . log ( age ) ;
var name = 'Lydia' ;
let age = 21 ;
}
sayHi ( ) ;
Lydia
とundefined
Lydia
とReferenceError
ReferenceError
と21
undefined
およびReferenceError
関数内で、最初にvar
キーワードでname
変数を宣言します。これは、変数を定義するラインに実際に到達するまで、変数がundefined
のデフォルト値で巻かれ(作成フェーズ中にメモリスペースが設定される)ことを意味します。 name
変数を記録しようとする行で変数をまだ定義していないため、 undefined
の値を保持しています。
let
キーワード(およびconst
)の変数は巻き上げられますが、 var
とは異なり、初期化されないでください。それらは、私たちがそれらを宣言(初期化)する前にアクセスできません。これは「時間的デッドゾーン」と呼ばれます。変数が宣言される前に変数にアクセスしようとすると、JavaScriptはReferenceError
をスローします。
for ( var i = 0 ; i < 3 ; i ++ ) {
setTimeout ( ( ) => console . log ( i ) , 1 ) ;
}
for ( let i = 0 ; i < 3 ; i ++ ) {
setTimeout ( ( ) => console . log ( i ) , 1 ) ;
}
0 1 2
および0 1 2
0 1 2
および3 3 3
3 3 3
および0 1 2
JavaScriptのイベントキューのため、ループが実行された後にsetTimeout
コールバック関数が呼び出されます。最初のループの変数i
var
キーワードを使用して宣言されたため、この値はグローバルでした。ループ中に、Unary Operator ++
を使用して、 i
の値を毎回1
増やしました。 setTimeout
コールバック関数が呼び出される頃には、最初の例では3
に等しくi
ました。
2番目のループでは、letキーワード: let
(およびconst
)キーワードで宣言されたlet
キーワードを使用してi
が宣言された変数はブロックスコープです(ブロックは{ }
の間にあります)。各反復中、 i
新しい値を持ち、各値はループ内でスコープされます。
const shape = {
radius : 10 ,
diameter ( ) {
return this . radius * 2 ;
} ,
perimeter : ( ) => 2 * Math . PI * this . radius ,
} ;
console . log ( shape . diameter ( ) ) ;
console . log ( shape . perimeter ( ) ) ;
20
および62.83185307179586
20
とNaN
20
および63
NaN
と63
diameter
の値は通常の関数であり、 perimeter
の値は矢印関数であることに注意してください。
矢印関数を使用すると、 this
キーワードは、通常の機能とは異なり、現在の周囲の範囲を指します!これは、 perimeter
を呼び出す場合、形状オブジェクトを参照するのではなく、周囲の範囲(たとえばウィンドウ)を参照します。
矢印2 * Math.PI
の範囲に値radius
がないため、 this.radius
undefined
NaN
なります。
+ true ;
! 'Lydia' ;
1
とfalse
false
とNaN
false
とfalse
Unary Plusは、オペランドを数に変換しようとします。 true
は1
で、 false
は0
です。
文字列'Lydia'
は真実の価値です。私たちが実際に尋ねているのは、「この真実の価値はfalsyですか?」です。これはfalse
を返します。
const bird = {
size : 'small' ,
} ;
const mouse = {
name : 'Mickey' ,
small : true ,
} ;
mouse.bird.size
は無効ですmouse[bird.size]
無効ですmouse[bird["size"]]
無効ですJavaScriptでは、すべてのオブジェクトキーが文字列です(シンボルでない限り)。私たちはそれらを弦としてタイプすることはないかもしれませんが、それらは常にフードの下の弦に変換されます。
JavaScriptは、ステートメントを解釈(または除外)します。ブラケット表記を使用すると、最初のオープニングブラケットが表示されます[
閉鎖ブラケットが見つかるまで続けます]
。その場合にのみ、声明を評価します。
mouse[bird.size]
:最初にbird.size
評価します。これは"small"
です。 mouse["small"]
true
を返します
ただし、DOT表記では、これは発生しません。 mouse
bird
と呼ばれるキーがありません。つまり、 mouse.bird
はundefined
です。次に、ドット表記を使用してsize
を要求します: mouse.bird.size
。 mouse.bird
はundefined
であるため、実際にはundefined.size
求めています。これは有効ではなく、 Cannot read property "size" of undefined
と同様のエラーをスローします。
let c = { greeting : 'Hey!' } ;
let d ;
d = c ;
c . greeting = 'Hello' ;
console . log ( d . greeting ) ;
Hello
Hey!
undefined
ReferenceError
TypeError
JavaScriptでは、すべてのオブジェクトが相互に等しく設定するときに参照によって相互作用します。
まず、変数c
オブジェクトの値を保持します。その後、 c
オブジェクトに持っているのと同じ参照をd
割り当てます。
1つのオブジェクトを変更すると、すべてを変更します。
let a = 3 ;
let b = new Number ( 3 ) ;
let c = 3 ;
console . log ( a == b ) ;
console . log ( a === b ) ;
console . log ( b === c ) ;
true
false
true
false
false
true
false
true
false
true
: false
true
new Number()
組み込み関数コンストラクターです。数字のように見えますが、実際には数字ではありません。追加の機能がたくさんあり、オブジェクトです。
==
オペレーター(equalityオペレーター)を使用する場合、同じ値があるかどうかをチェックします。どちらも3
の値を持っているので、それはtrue
です。
ただし、 ===
オペレーター(Strict Equality Operator)を使用する場合、値とタイプの両方が同じでなければなりません。そうではありません: new Number()
数字ではなく、オブジェクトです。どちらもfalse.
class Chameleon {
static colorChange ( newColor ) {
this . newColor = newColor ;
return this . newColor ;
}
constructor ( { newColor = 'green' } = { } ) {
this . newColor = newColor ;
}
}
const freddie = new Chameleon ( { newColor : 'purple' } ) ;
console . log ( freddie . colorChange ( 'orange' ) ) ;
orange
purple
green
TypeError
colorChange
関数は静的です。静的メソッドは、作成されたコンストラクターのみで生活するように設計されており、子供に受け継がれたり、クラスのインスタンスに呼び出されたりすることはできません。 freddie
クラスのカメレオンのインスタンスであるため、機能を呼び出すことはできません。 TypeError
が投げられます。
let greeting ;
greetign = { } ; // Typo!
console . log ( greetign ) ;
{}
ReferenceError: greetign is not defined
undefined
グローバルオブジェクトに空のオブジェクトを作成しただけなので、オブジェクトを記録します! greeting
をgreetign
として間違えたとき、JS通訳者は実際にこれを次のように見ました。
global.greetign = {}
in node.jswindow.greetign = {}
、 frames.greetign = {}
およびself.greetign
のブラウザ。self.greetign
。globalThis.greetign
。これを回避するために、 "use strict"
を使用できます。これにより、変数を何に等しく設定する前に、変数を宣言したことを確認します。
function bark ( ) {
console . log ( 'Woof!' ) ;
}
bark . animal = 'dog' ;
SyntaxError
。この方法で機能にプロパティを追加することはできません。"Woof"
が記録されます。ReferenceError
関数はオブジェクトであるため、これはJavaScriptで可能です! (プリミティブタイプ以外のすべてはオブジェクトです)
関数は特別なタイプのオブジェクトです。自分で書くコードは実際の関数ではありません。関数は、プロパティを備えたオブジェクトです。このプロパティは呼び出されます。
function Person ( firstName , lastName ) {
this . firstName = firstName ;
this . lastName = lastName ;
}
const member = new Person ( 'Lydia' , 'Hallie' ) ;
Person . getFullName = function ( ) {
return ` ${ this . firstName } ${ this . lastName } ` ;
} ;
console . log ( member . getFullName ( ) ) ;
TypeError
SyntaxError
Lydia Hallie
undefined
undefined
JavaScriptでは、関数はオブジェクトであるため、メソッドgetFullName
コンストラクター関数オブジェクト自体に追加されます。そのため、 Person.getFullName()
を呼び出すことができますが、 member.getFullName
TypeError
スローします。
すべてのオブジェクトインスタンスでメソッドを使用できるようにする場合は、プロトタイププロパティに追加する必要があります。
Person . prototype . getFullName = function ( ) {
return ` ${ this . firstName } ${ this . lastName } ` ;
} ;
function Person ( firstName , lastName ) {
this . firstName = firstName ;
this . lastName = lastName ;
}
const lydia = new Person ( 'Lydia' , 'Hallie' ) ;
const sarah = Person ( 'Sarah' , 'Smith' ) ;
console . log ( lydia ) ;
console . log ( sarah ) ;
Person {firstName: "Lydia", lastName: "Hallie"}
、 undefined
Person {firstName: "Lydia", lastName: "Hallie"}
およびPerson {firstName: "Sarah", lastName: "Smith"}
Person {firstName: "Lydia", lastName: "Hallie"}
および{}
Person {firstName: "Lydia", lastName: "Hallie"}
およびReferenceError
sarah
には、 new
キーワードを使用しませんでした。 new
使用する場合、 this
作成した新しい空のオブジェクトを指します。ただし、 new
追加を追加しない場合、 this
グローバルオブジェクトを指します!
this.firstName
this.lastName
"Sarah"
"Smith"
に等しいと言いました。私たちが実際にしたことは、 global.firstName = 'Sarah'
とglobal.lastName = 'Smith'
を定義することです。 sarah
自体は、 Person
関数から値を返さないため、 undefined
ままです。
キャプチャフェーズ中、イベントは祖先要素をターゲット要素まで通過します。次に、ターゲット要素に到達し、泡立ちが始まります。
すべてのオブジェクトには、ベースオブジェクトを除き、プロトタイプがあります。ベースオブジェクトは、ユーザーによって作成されたオブジェクト、またはnew
キーワードを使用して作成されるオブジェクトです。ベースオブジェクトには、 .toString
などのいくつかのメソッドとプロパティにアクセスできます。これが、組み込みのJavaScriptメソッドを使用できる理由です!このような方法はすべて、プロトタイプで入手できます。 JavaScriptはオブジェクトで直接見つけることができませんが、プロトタイプチェーンを下ってそこに見つけられるため、アクセスしやすくなります。
function sum ( a , b ) {
return a + b ;
}
sum ( 1 , '2' ) ;
NaN
TypeError
"12"
3
JavaScriptは動的にタイプされた言語です。特定の変数がどのようなタイプであるかは指定しません。値は、暗黙の型強制と呼ばれることなく、自動的に別のタイプに変換できます。強制は、あるタイプから別のタイプに変換されています。
この例では、JavaScriptは、関数が意味を作り、値を返すために、番号1
文字列に変換します。数値タイプ( 1
)と文字列タイプ( '2'
)を追加すると、数値は文字列として扱われます。 "Hello" + "World"
のような文字列を連結することができます。したがって、ここで起こっているのは、 "12"
を返す"1" + "2"
です。
let number = 0 ;
console . log ( number ++ ) ;
console . log ( ++ number ) ;
console . log ( number ) ;
1
1
2
1
2
2
0
2
2
0
1
2
Postfix Unary Operator ++
:
0
を返します)1
です)接頭辞統一演算子++
:
2
です)2
を返します)これは0 2 2
を返します。
function getPersonInfo ( one , two , three ) {
console . log ( one ) ;
console . log ( two ) ;
console . log ( three ) ;
}
const person = 'Lydia' ;
const age = 21 ;
getPersonInfo ` ${ person } is ${ age } years old` ;
"Lydia"
21
["", " is ", " years old"]
["", " is ", " years old"]
"Lydia"
21
"Lydia"
["", " is ", " years old"]
21
タグ付きテンプレートリテラルを使用する場合、最初の引数の値は常に文字列値の配列です。残りの議論は、渡された式の値を取得します!
function checkAge ( data ) {
if ( data === { age : 18 } ) {
console . log ( 'You are an adult!' ) ;
} else if ( data == { age : 18 } ) {
console . log ( 'You are still an adult.' ) ;
} else {
console . log ( `Hmm.. You don't have an age I guess` ) ;
}
}
checkAge ( { age : 18 } ) ;
You are an adult!
You are still an adult.
Hmm.. You don't have an age I guess
平等をテストするとき、プリミティブはその価値によって比較され、オブジェクトは参照によって比較されます。 JavaScriptは、オブジェクトがメモリ内の同じ場所に参照されているかどうかを確認します。
私たちが比較している2つのオブジェクトはそれを持っていません。パラメーターとして渡したオブジェクトは、平等をチェックするために使用したオブジェクトとは異なる場所を指します。
これが{ age: 18 } === { age: 18 }
と{ age: 18 } == { age: 18 }
の両方がfalse
を返す理由です。
function getAge ( ... args ) {
console . log ( typeof args ) ;
}
getAge ( 21 ) ;
"number"
"array"
"object"
"NaN"
RESTパラメーター( ...args
)を使用すると、残りのすべての引数を配列に「収集」できます。アレイはオブジェクトであるため、 typeof args
"object"
を返します
function getAge ( ) {
'use strict' ;
age = 21 ;
console . log ( age ) ;
}
getAge ( ) ;
21
undefined
ReferenceError
TypeError
"use strict"
を使用すると、グローバル変数を誤って宣言しないようにすることができます。変動age
宣言することはありませんでした。 "use strict"
を使用するため、参照エラーが発生します。 "use strict"
を使用しなければ、財産age
グローバルオブジェクトに追加されたため、機能していたでしょう。
sum
の価値は何ですか? const sum = eval ( '10*10+5' ) ;
105
"105"
TypeError
"10*10+5"
eval
文字列として渡されたコードを評価します。この場合のように、それが式である場合、式を評価します。式は10 * 10 + 5
です。これにより、番号105
が返されます。
sessionStorage . setItem ( 'cool_secret' , 123 ) ;
sessionStorage
に保存されているデータは、タブを閉じた後に削除されます。
localStorage
使用した場合、たとえばlocalStorage.clear()
が呼び出されない限り、データは永遠にそこにいたでしょう。
var num = 8 ;
var num = 10 ;
console . log ( num ) ;
8
10
SyntaxError
ReferenceError
var
キーワードを使用すると、同じ名前の複数の変数を宣言できます。変数は最新の値を保持します。
let
またはconst
ブロックスコープであるため、これを行うことはできません。
const obj = { 1 : 'a' , 2 : 'b' , 3 : 'c' } ;
const set = new Set ( [ 1 , 2 , 3 , 4 , 5 ] ) ;
obj . hasOwnProperty ( '1' ) ;
obj . hasOwnProperty ( 1 ) ;
set . has ( '1' ) ;
set . has ( 1 ) ;
false
true
false
true
true
false
true
true
true
true
false
true
true
true
true
true
すべてのオブジェクトキー(シンボルを除く)は、文字列として自分で入力しなくても、フードの下の文字列です。これがobj.hasOwnProperty('1')
もtrueを返す理由です。
セットではそのように機能しません。私たちのセットには'1'
はありません: set.has('1')
false
を返します。数値タイプ1
、 set.has(1)
がtrue
返します。
const obj = { a : 'one' , b : 'two' , a : 'three' } ;
console . log ( obj ) ;
{ a: "one", b: "two" }
{ b: "two", a: "three" }
{ a: "three", b: "two" }
SyntaxError
同じ名前の2つのキーがある場合、キーは交換されます。それはまだ最初の位置にありますが、最後に指定された値があります。
基本実行コンテキストは、グローバルな実行コンテキストです。コードのどこでもアクセスできるものです。
for ( let i = 1 ; i < 5 ; i ++ ) {
if ( i === 3 ) continue ;
console . log ( i ) ;
}
1
2
1
2
3
1
2
4
1
3
4
特定の条件がtrue
を返す場合、 continue
ステートメントは反復をスキップします。
String . prototype . giveLydiaPizza = ( ) => {
return 'Just give Lydia pizza already!' ;
} ;
const name = 'Lydia' ;
console . log ( name . giveLydiaPizza ( ) )
"Just give Lydia pizza already!"
TypeError: not a function
SyntaxError
undefined
String
、プロパティを追加できる組み込みコンストラクターです。そのプロトタイプにメソッドを追加しました。プリミティブ文字列は、文字列プロトタイプ関数によって生成される文字列オブジェクトに自動的に変換されます。したがって、すべての文字列(文字列オブジェクト)はその方法にアクセスできます!
const a = { } ;
const b = { key : 'b' } ;
const c = { key : 'c' } ;
a [ b ] = 123 ;
a [ c ] = 456 ;
console . log ( a [ b ] ) ;
123
456
undefined
ReferenceError
オブジェクトキーは自動的に文字列に変換されます。 123
の値で、オブジェクトa
の鍵としてオブジェクトを設定しようとしています。
ただし、オブジェクトをストリングすると、 "[object Object]"
になります。それで、私たちがここで言っているのは、 a["[object Object]"] = 123
あるということです。その後、もう一度同じことをすることができます。 c
暗黙的にストリング化されている別のオブジェクトです。それで、 a["[object Object]"] = 456
。
次に、 a[b]
a["[object Object]"]
にします。それを456
に設定するだけなので、 456
返します。
const foo = ( ) => console . log ( 'First' ) ;
const bar = ( ) => setTimeout ( ( ) => console . log ( 'Second' ) ) ;
const baz = ( ) => console . log ( 'Third' ) ;
bar ( ) ;
foo ( ) ;
baz ( ) ;
First
Second
Third
First
Third
Second
Second
First
3 Third
Third
Second
First
setTimeout
関数があり、最初に呼び出しました。それでも、最後に記録されました。
これは、ブラウザでは、ランタイムエンジンだけでなく、 WebAPI
と呼ばれるものもあるためです。 WebAPI
最初にsetTimeout
関数を提供し、たとえばDOMを提供します。
コールバックがWebAPIにプッシュされた後、 setTimeout
関数自体(コールバックではありません!)がスタックから飛び出します。
今、 foo
呼び出され、 "First"
が記録されています。
foo
はスタックから飛び出し、 baz
呼び出されます。 "Third"
記録されます。
WebAPIは、準備ができたらいつでもスタックに物を追加することはできません。代わりに、コールバック関数をキューと呼ばれるものにプッシュします。
これは、イベントループが機能し始めた場所です。イベントループは、スタックとタスクキューを調べます。スタックが空の場合、キューに最初のものを取り、スタックに押し込みます。
bar
呼び出され、 "Second"
がログに記録され、スタックから飛び出します。
< div onclick =" console.log('first div') " >
< div onclick =" console.log('second div') " >
< button onclick =" console.log('button') " >
Click!
</ button >
</ div >
</ div >
div
div
button
イベントを引き起こした最も深いネストされた要素は、イベントのターゲットです。 event.stopPropagation
によって泡立ちを止めることができます
< div onclick =" console.log('div') " >
< p onclick =" console.log('p') " >
Click here!
</ p >
</ div >
p
div
div
p
p
div
p
クリックすると、2つのログが表示されます: p
とdiv
。イベントの伝播中に、キャプチャ、ターゲティング、泡の3つのフェーズがあります。デフォルトでは、イベントハンドラーはバブルフェーズで実行されます( useCapture
true
に設定しない限り)。それは、最も深いネストされた要素から外側に行きます。
const person = { name : 'Lydia' } ;
function sayHi ( age ) {
return ` ${ this . name } is ${ age } ` ;
}
console . log ( sayHi . call ( person , 21 ) ) ;
console . log ( sayHi . bind ( person , 21 ) ) ;
undefined is 21
Lydia is 21
function
function
Lydia is 21
Lydia is 21
Lydia is 21
function
です両方を使用すると、 this
キーワードを参照したいオブジェクトを渡すことができます。ただし、 .call
もすぐに実行されます!
.bind.
関数のコピーを返しますが、バウンドコンテキストがあります!すぐに実行されません。
function sayHi ( ) {
return ( ( ) => 0 ) ( ) ;
}
console . log ( typeof sayHi ( ) ) ;
"object"
"number"
"function"
"undefined"
sayHi
関数は、すぐに呼び出された関数式(IIFE)の返された値を返します。この関数は0
返し、タイプ"number"
です。
参考までに、 typeof
次の値のリストを返すことができます: undefined
、 boolean
、 number
、 bigint
object
string
、シンボル、 symbol
、およびfunction
。 typeof null
"object"
を返すことに注意してください。
0 ;
new Number ( 0 ) ;
( '' ) ;
( ' ' ) ;
new Boolean ( false ) ;
undefined ;
0
、 ''
、 undefined
0
、 new Number(0)
、 ''
、 new Boolean(false)
、 undefined
0
、 ''
、 new Boolean(false)
、 undefined
8つのfalsy値があります:
undefined
null
NaN
false
''
(空の文字列)0
-0
0n
(bigint(0)) new Number
やnew Boolean
のような関数コンストラクターは真実です。
console . log ( typeof typeof 1 ) ;
"number"
"string"
"object"
"undefined"
typeof 1
"number"
を返します。 typeof "number"
return "string"
const numbers = [ 1 , 2 , 3 ] ;
numbers [ 10 ] = 11 ;
console . log ( numbers ) ;
[1, 2, 3, null x 7, 11]
[1, 2, 3, 11]
[1, 2, 3, empty x 7, 11]
SyntaxError
配列の長さを超える配列内の要素に値を設定すると、JavaScriptは「空のスロット」と呼ばれるものを作成します。これらは実際にはundefined
の価値を持っていますが、次のようなものが表示されます。
[1, 2, 3, empty x 7, 11]
実行する場所に応じて(ブラウザ、ノードなどごとに異なります)
( ( ) => {
let x , y ;
try {
throw new Error ( ) ;
} catch ( x ) {
( x = 1 ) , ( y = 2 ) ;
console . log ( x ) ;
}
console . log ( x ) ;
console . log ( y ) ;
} ) ( ) ;
1
undefined
2
undefined
undefined
undefined
1
1
2
undefined
undefined
1
定義 catch
ブロックは引数x
受け取ります。これは、引数を渡すときに変数と同じx
ではありません。この変数x
ブロックスコープです。
その後、このブロックスコープされた変数を1
に等しく設定し、変数y
の値を設定します。次に、ブロックスコープされた変数x
1
に等しいログに記録します。
catch
ブロックの外側では、 x
まだundefined
んy
は2
です。 catch
ブロックの外側の外側にconsole.log(x)
作成すると、 undefined
戻り、 y
2
返します。
JavaScriptには、プリミティブタイプとオブジェクトのみがあります。
プリミティブタイプは、 boolean
、 null
、 undefined
、 bigint
、 number
、 string
、およびsymbol
です。
原始をオブジェクトと区別するのは、プリミティブにはプロパティや方法がないことです。ただし、 'foo'.toUpperCase()
'FOO'
に評価され、 TypeError
には発生しないことに注意してください。これは、文字列のような原始的なプロパティまたはメソッドにアクセスしようとすると、JavaScriptは、ラッパークラスの1つ、つまりString
を使用してプリミティブタイプを暗黙的にラップし、式が評価された後にラッパーをすぐに破棄するためです。 null
およびundefined
を除くすべてのプリミティブは、この動作を示しています。
[ [ 0 , 1 ] , [ 2 , 3 ] ] . reduce (
( acc , cur ) => {
return acc . concat ( cur ) ;
} ,
[ 1 , 2 ] ,
) ;
[0, 1, 2, 3, 1, 2]
[6, 1, 2]
[1, 2, 0, 1, 2, 3]
[1, 2, 6]
[1, 2]
初期値です。これは、私たちが始める値であり、最初のacc
の値です。最初のラウンドでは、 acc
は[1,2]
であり、 cur
は[0, 1]
です。それらを連結し、 [1, 2, 0, 1]
になります。
次に、 [1, 2, 0, 1]
はacc
、 [2, 3]
はcur
です。それらを連結して、 [1, 2, 0, 1, 2, 3]
を取得します。
! ! null ;
! ! '' ;
! ! 1 ;
false
true
false
false
false
true
true
: false
true
true
true
false
null
はfalsyです。 !null
true
を返します。 !true
false
を返します。
""
falsy。 !""
true
を返します。 !true
false
を返します。
1
真実です。 !1
false
を返します。 !false
true
を返します。
setInterval
メソッドは何を返しますか? setInterval ( ( ) => console . log ( 'Hi' ) , 1000 ) ;
undefined
一意のIDを返します。このIDを使用して、 clearInterval()
関数を使用してその間隔をクリアできます。
[ ... 'Lydia' ] ;
["L", "y", "d", "i", "a"]
["Lydia"]
[[], "Lydia"]
[["L", "y", "d", "i", "a"]]
文字列は反復可能です。スプレッド演算子は、1つの要素を反復可能なすべての文字をマッピングします。
function * generator ( i ) {
yield i ;
yield i * 2 ;
}
const gen = generator ( 10 ) ;
console . log ( gen . next ( ) . value ) ;
console . log ( gen . next ( ) . value ) ;
[0, 10], [10, 20]
20, 20
10, 20
0, 10 and 10, 20
呼び出し後、通常の機能を途中で停止することはできません。ただし、ジェネレーター機能は途中で「停止」し、後で停止した場所から続行できます。ジェネレーター関数がyield
キーワードに遭遇するたびに、関数はその後指定された値を生成します。その場合のジェネレーター関数は値を返さず、値が生成されることに注意してください。
まず、 i
が10
に等しく、ジェネレーター関数を初期化します。 next()
メソッドを使用して、ジェネレーター機能を呼び出します。ジェネレーター関数を初めて呼び出すとき、 i
10
に等しくなります。最初のyield
キーワードに遭遇しますi
の値を生成します。ジェネレーターは「一時停止」になり、 10
記録されます。
次に、 next()
メソッドを使用して関数を再度呼び出します。それは以前に停止したところから続き始めますが、それでもi
は10
に等しくなります。これで、次のyield
キーワードに遭遇し、 i * 2
獲得します。 i
10
に等しいので、 10 * 2
を返します。これは20
です。これにより10, 20
になります。
const firstPromise = new Promise ( ( res , rej ) => {
setTimeout ( res , 500 , 'one' ) ;
} ) ;
const secondPromise = new Promise ( ( res , rej ) => {
setTimeout ( res , 100 , 'two' ) ;
} ) ;
Promise . race ( [ firstPromise , secondPromise ] ) . then ( res => console . log ( res ) ) ;
"one"
"two"
"two" "one"
"one" "two"
Promise.race
メソッドに複数の約束を渡すと、解決/拒否を解決/拒否します。 setTimeout
メソッドには、最初の約束( firstPromise
)で500ms、2番目の約束( secondPromise
)で100msを渡します。これは、 secondPromise
が最初に'two'
の値で解決することを意味します。 res
'two'
の値を保持し、ログが記録されます。
let person = { name : 'Lydia' } ;
const members = [ person ] ;
person = null ;
console . log ( members ) ;
null
[null]
[{}]
[{ name: "Lydia" }]
最初に、 name
プロパティを持つオブジェクトの値を持つ変数のperson
宣言します。
次に、 members
と呼ばれる変数を宣言します。その配列の最初の要素を、 person
変数の値に等しく設定します。オブジェクトは、相互に等しく設定するときに参照によって相互作用します。ある変数から別の変数に参照を割り当てると、その参照のコピーを作成します。 (同じ参照を持っていないことに注意してください!)
次に、 person
をnull
に等しく設定します。
その要素にはオブジェクトとは異なる(コピーされた)参照があるため、配列の最初の要素ではなく、 person
変数の値のみを変更しています。 members
の最初の要素は、元のオブジェクトへの参照を保持しています。 members
アレイをログに記録すると、最初の要素はオブジェクトの値を保持し、ログが表示されます。
const person = {
name : 'Lydia' ,
age : 21 ,
} ;
for ( const item in person ) {
console . log ( item ) ;
}
{ name: "Lydia" }, { age: 21 }
"name", "age"
"Lydia", 21
["name", "Lydia"], ["age", 21]
for-in
ループを使用すると、オブジェクトキー、この場合はname
とage
を繰り返すことができます。ボンネットの下では、オブジェクトキーは文字列です(シンボルではない場合)。すべてのループで、 item
の値を繰り返している現在のキーに等しく設定します。まず、 item
name
と等しく、ログが表示されます。次に、 item
age
に等しく、ログが表示されます。
console . log ( 3 + 4 + '5' ) ;
"345"
"75"
12
"12"
オペレーターの関連性は、コンパイラが左から右への式または右から右の式を評価する順序です。これは、すべてのオペレーターが同じ優先順位を持っている場合にのみ発生します。オペレーターのタイプは1つしかありません。 +
。追加の場合、連想は左から右にあります。
3 + 4
最初に評価されます。これは7
番になります。
7 + '5'
強制のために"75"
になります。 JavaScriptは数字7
文字列に変換します。質問15を参照してください。 +
演算子を使用して2つの文字列を連結できます。 "7" + "5"
"75"
になります。
num
は何ですか? const num = parseInt ( '7*6' , 10 ) ;
42
"42"
7
NaN
文字列の最初の番号のみが返されます。基数(2番目の引数)に基づいて、ベース10、16進数、オクタル、バイナリなどを解析する数値を指定するために)、 parseInt
、文字列の文字が有効かどうかを確認します。基数の有効な数字ではないキャラクターに遭遇すると、解析を停止し、次の文字を無視します。
*
有効な番号ではありません。 "7"
は小数7
にのみ解析します。 num
7
の値を保持します。
[ 1 , 2 , 3 ] . map ( num => {
if ( typeof num === 'number' ) return ;
return num * 2 ;
} ) ;
[]
[null, null, null]
[undefined, undefined, undefined]
[ 3 x empty ]
配列をマッピングすると、 num
の値は現在ループしている要素に等しくなります。この場合、要素は数値であるため、IFステートメントtypeof num === "number"
の条件はtrue
返します。マップ関数は新しい配列を作成し、関数から返される値を挿入します。
ただし、値は返されません。関数から値を返さない場合、関数はundefined
戻ります。配列内のすべての要素について、関数ブロックが呼び出されるため、各要素に対してundefined
戻ります。
function getInfo ( member , year ) {
member . name = 'Lydia' ;
year = '1998' ;
}
const person = { name : 'Sarah' } ;
const birthYear = '1997' ;
getInfo ( person , birthYear ) ;
console . log ( person , birthYear ) ;
{ name: "Lydia" }, "1997"
{ name: "Sarah" }, "1998"
{ name: "Lydia" }, "1998"
{ name: "Sarah" }, "1997"
引数は、価値がオブジェクトでない限り、価値によって渡されます。その後、参照によって渡されます。 birthYear
、オブジェクトではなく文字列であるため、値で渡されます。 Valueで引数を渡すと、その値のコピーが作成されます(質問46を参照)。
可変birthYear
は、値"1997"
への参照があります。引数year
は、 "1997"
の値への参照もありますが、 birthYear
が参照しているのと同じ値ではありません。 "1998"
に等しいyear
設定することでyear
の値を更新すると、 year
の値のみを更新します。 birthYear
まだ"1997"
に等しくなります。
person
の価値はオブジェクトです。引数member
同じオブジェクトへの(コピーされた)参照があります。オブジェクトmember
のプロパティを変更すると、参照がありますが、両方とも同じオブジェクトへの参照があるため、 person
の値も変更されます。 person
のname
プロパティは、 "Lydia"
値に等しいようになりました
function greeting ( ) {
throw 'Hello world!' ;
}
function sayHi ( ) {
try {
const data = greeting ( ) ;
console . log ( 'It worked!' , data ) ;
} catch ( e ) {
console . log ( 'Oh no an error:' , e ) ;
}
}
sayHi ( ) ;
It worked! Hello world!
Oh no an error: undefined
SyntaxError: can only throw Error objects
Oh no an error: Hello world!
throw
ステートメントを使用すると、カスタムエラーを作成できます。この声明を使用すると、例外を投げることができます。例外は、文字列、数字、ブール値、またはオブジェクトです。この場合、私たちの例外は文字列'Hello world!'
です。 。
catch
ステートメントを使用すると、 try
ブロックに例外がスローされた場合の対処方法を指定できます。例外がスローされます:文字列'Hello world!'
。 e
、その文字列に等しくなり、ログに記録します。これにより、 'Oh an error: Hello world!'
。
function Car ( ) {
this . make = 'Lamborghini' ;
return { make : 'Maserati' } ;
}
const myCar = new Car ( ) ;
console . log ( myCar . make ) ;
"Lamborghini"
"Maserati"
ReferenceError
TypeError
コンストラクター関数がnew
キーワードで呼び出されると、オブジェクトを作成し、 this
キーワードを設定してそのオブジェクトを参照します。デフォルトでは、コンストラクター関数が明示的に何も返さない場合、新しく作成されたオブジェクトが返されます。
この場合、コンストラクター機能Car
デフォルトの動作をオーバーライドする"Maserati"
に設定されたmake
が設定された新しいオブジェクトを明示的に返します。したがって、 new Car()
が呼び出されると、返されたオブジェクトがmyCar
に割り当てられ、 myCar.make
にアクセスすると出力が"Maserati"
になります。
( ( ) => {
let x = ( y = 10 ) ;
} ) ( ) ;
console . log ( typeof x ) ;
console . log ( typeof y ) ;
"undefined", "number"
"number", "number"
"object", "number"
"number", "undefined"
let x = (y = 10);
実際には速記です:
y = 10 ;
let x = y ;
y
10
に等しく設定すると、実際にグローバルオブジェクトにプロパティy
を追加します(ブラウザのwindow
、ノードのglobal
)。ブラウザでは、 window.y
10
に等しくなりました。
次に、 y
の値で変数x
宣言します。これは10
です。 let
キーワードで宣言された変数はブロックスコープであり、宣言されているブロック内でのみ定義されます。この場合、すぐに呼び出された関数式(IIFE)。 typeof
演算子を使用すると、Operand x
定義されていません。宣言されたブロックの外側にx
にアクセスしようとしています。これは、 x
が定義されていないことを意味します。値が割り当てられていない、または宣言された値は"undefined"
のタイプです。 console.log(typeof x)
"undefined"
を返します。
ただし、 y
10
に設定すると、グローバル変数y
作成しました。この値は、コードのどこでもアクセスできます。 y
定義されており、 "number"
のタイプの値を保持します。 console.log(typeof y)
"number"
を返します。
class Dog {
constructor ( name ) {
this . name = name ;
}
}
Dog . prototype . bark = function ( ) {
console . log ( `Woof I am ${ this . name } ` ) ;
} ;
const pet = new Dog ( 'Mara' ) ;
pet . bark ( ) ;
delete Dog . prototype . bark ;
pet . bark ( ) ;
"Woof I am Mara"
、 TypeError
"Woof I am Mara"
、 "Woof I am Mara"
"Woof I am Mara"
、 undefined
TypeError
、 TypeError
プロトタイプでも、 delete
キーワードを使用してオブジェクトからプロパティを削除できます。プロトタイプ上のプロパティを削除することにより、プロトタイプチェーンでは利用できなくなりました。この場合、 delete Dog.prototype.bark
後、 bark
関数はプロトタイプではもう利用できませんが、それでもアクセスしようとしています。
関数ではないものを呼び出すと、 TypeError
がスローされます。この場合TypeError: pet.bark is not a function
。Pet.Bark pet.bark
undefined
です。
const set = new Set ( [ 1 , 1 , 2 , 3 , 4 ] ) ;
console . log ( set ) ;
[1, 1, 2, 3, 4]
[1, 2, 3, 4]
{1, 1, 2, 3, 4}
{1, 2, 3, 4}
Set
オブジェクトは、一意の値のコレクションです。値はセットで1回しか発生しません。
複製値1
で反復可能[1, 1, 2, 3, 4]
を渡しました。セットに2つの同じ値を持つことはできないため、そのうちの1つは削除されます。これにより{1, 2, 3, 4}
になります。
// counter.js
let counter = 10 ;
export default counter ;
// index.js
import myCounter from './counter' ;
myCounter += 1 ;
console . log ( myCounter ) ;
10
11
Error
NaN
インポートされたモジュールは読み取り専用です。インポートされたモジュールを変更することはできません。それらをエクスポートするモジュールのみがその値を変更できます。
myCounter
の値を増やそうとすると、エラーが発生します。MyCounter myCounter
読み取り専用で、変更できません。
const name = 'Lydia' ;
age = 21 ;
console . log ( delete name ) ;
console . log ( delete age ) ;
false
、 true
"Lydia"
、 21
true
、 true
undefined
、 undefined
delete
演算子はブール値を返します:削除が成功した場合にtrue
、そうしないとfalse
が返されます。ただし、 var
、 const
、またはlet
キーワードで宣言された変数は、 delete
演算子を使用して削除できません。
name
変数はconst
キーワードで宣言されたため、その削除は成功しません: false
が返されます。 age
21
に等しく設定すると、実際にGlobalオブジェクトにage
と呼ばれるプロパティを追加しました。この方法でオブジェクトからプロパティを正常に削除できます。グローバルオブジェクトであるため、 delete age
ことはtrue
。
const numbers = [ 1 , 2 , 3 , 4 , 5 ] ;
const [ y ] = numbers ;
console . log ( y ) ;
[[1, 2, 3, 4, 5]]
[1, 2, 3, 4, 5]
1
[1]
アレイまたはプロパティからオブジェクトからのプロパティから破壊的なものを開梱できます。例えば:
[ a , b ] = [ 1 , 2 ] ;
a
の値は現在1
で、 b
の値は2
なります。私たちが実際に質問でしたことは、次のとおりです。
[ y ] = [ 1 , 2 , 3 , 4 , 5 ] ;
これは、 y
の値が配列の最初の値、つまりナンバー1
に等しいことを意味します。 y
記録すると、 1
返されます。
const user = { name : 'Lydia' , age : 21 } ;
const admin = { admin : true , ... user } ;
console . log ( admin ) ;
{ admin: true, user: { name: "Lydia", age: 21 } }
{ admin: true, name: "Lydia", age: 21 }
{ admin: true, user: ["Lydia", 21] }
{ admin: true }
スプレッドオペレーターを使用してオブジェクトを結合することができます...
1つのオブジェクトのキー/値ペアのコピーを作成し、別のオブジェクトに追加できます。この場合、 user
オブジェクトのコピーを作成し、 admin
オブジェクトに追加します。 The admin
object now contains the copied key/value pairs, which results in { admin: true, name: "Lydia", age: 21 }
.
const person = { name : 'Lydia' } ;
Object . defineProperty ( person , 'age' , { value : 21 } ) ;
console . log ( person ) ;
console . log ( Object . keys ( person ) ) ;
{ name: "Lydia", age: 21 }
, ["name", "age"]
{ name: "Lydia", age: 21 }
, ["name"]
{ name: "Lydia"}
, ["name", "age"]
{ name: "Lydia"}
, ["age"]
With the defineProperty
method, we can add new properties to an object, or modify existing ones. When we add a property to an object using the defineProperty
method, they are by default not enumerable . The Object.keys
method returns all enumerable property names from an object, in this case only "name"
.
Properties added using the defineProperty
method are immutable by default. You can override this behavior using the writable
, configurable
and enumerable
properties. This way, the defineProperty
method gives you a lot more control over the properties you're adding to an object.
const settings = {
username : 'lydiahallie' ,
level : 19 ,
health : 90 ,
} ;
const data = JSON . stringify ( settings , [ 'level' , 'health' ] ) ;
console . log ( data ) ;
"{"level":19, "health":90}"
"{"username": "lydiahallie"}"
"["level", "health"]"
"{"username": "lydiahallie", "level":19, "health":90}"
The second argument of JSON.stringify
is the replacer . The replacer can either be a function or an array, and lets you control what and how the values should be stringified.
If the replacer is an array , only the property names included in the array will be added to the JSON string. In this case, only the properties with the names "level"
and "health"
are included, "username"
is excluded. data
is now equal to "{"level":19, "health":90}"
.
If the replacer is a function , this function gets called on every property in the object you're stringifying. The value returned from this function will be the value of the property when it's added to the JSON string. If the value is undefined
, this property is excluded from the JSON string.
let num = 10 ;
const increaseNumber = ( ) => num ++ ;
const increasePassedNumber = number => number ++ ;
const num1 = increaseNumber ( ) ;
const num2 = increasePassedNumber ( num1 ) ;
console . log ( num1 ) ;
console . log ( num2 ) ;
10
, 10
10
, 11
11
, 11
11
, 12
The unary operator ++
first returns the value of the operand, then increments the value of the operand. The value of num1
is 10
, since the increaseNumber
function first returns the value of num
, which is 10
, and only increments the value of num
afterward.
num2
is 10
, since we passed num1
to the increasePassedNumber
. number
is equal to 10
(the value of num1
). Again, the unary operator ++
first returns the value of the operand, then increments the value of the operand. The value of number
is 10
, so num2
is equal to 10
.
const value = { number : 10 } ;
const multiply = ( x = { ... value } ) => {
console . log ( ( x . number *= 2 ) ) ;
} ;
multiply ( ) ;
multiply ( ) ;
multiply ( value ) ;
multiply ( value ) ;
20
, 40
, 80
, 160
20
, 40
, 20
, 40
20
, 20
, 20
, 40
NaN
, NaN
, 20
, 40
In ES6, we can initialize parameters with a default value. The value of the parameter will be the default value, if no other value has been passed to the function, or if the value of the parameter is "undefined"
. In this case, we spread the properties of the value
object into a new object, so x
has the default value of { number: 10 }
.
The default argument is evaluated at call time ! Every time we call the function, a new object is created. We invoke the multiply
function the first two times without passing a value: x
has the default value of { number: 10 }
. We then log the multiplied value of that number, which is 20
.
The third time we invoke multiply, we do pass an argument: the object called value
. The *=
operator is actually shorthand for x.number = x.number * 2
: we modify the value of x.number
, and log the multiplied value 20
.
The fourth time, we pass the value
object again. x.number
was previously modified to 20
, so x.number *= 2
logs 40
.
[ 1 , 2 , 3 , 4 ] . reduce ( ( x , y ) => console . log ( x , y ) ) ;
1
2
and 3
3
and 6
4
1
2
and 2
3
and 3
4
1
undefined
and 2
undefined
and 3
undefined
and 4
undefined
1
2
and undefined
3
and undefined
4
The first argument that the reduce
method receives is the accumulator , x
in this case. The second argument is the current value , y
. With the reduce method, we execute a callback function on every element in the array, which could ultimately result in one single value.
In this example, we are not returning any values, we are simply logging the values of the accumulator and the current value.
The value of the accumulator is equal to the previously returned value of the callback function. If you don't pass the optional initialValue
argument to the reduce
method, the accumulator is equal to the first element on the first call.
On the first call, the accumulator ( x
) is 1
, and the current value ( y
) is 2
. We don't return from the callback function, we log the accumulator, and the current values: 1
and 2
get logged.
If you don't return a value from a function, it returns undefined
. On the next call, the accumulator is undefined
, and the current value is 3
. undefined
and 3
get logged.
On the fourth call, we again don't return from the callback function. The accumulator is again undefined
, and the current value is 4
. undefined
and 4
get logged.
Dog
class? class Dog {
constructor ( name ) {
this . name = name ;
}
} ;
class Labrador extends Dog {
// 1
constructor ( name , size ) {
this . size = size ;
}
// 2
constructor ( name , size ) {
super ( name ) ;
this . size = size ;
}
// 3
constructor ( size ) {
super ( name ) ;
this . size = size ;
}
// 4
constructor ( name , size ) {
this . name = name ;
this . size = size ;
}
} ;
In a derived class, you cannot access the this
keyword before calling super
. If you try to do that, it will throw a ReferenceError: 1 and 4 would throw a reference error.
With the super
keyword, we call that parent class's constructor with the given arguments. The parent's constructor receives the name
argument, so we need to pass name
to super
.
The Labrador
class receives two arguments, name
since it extends Dog
, and size
as an extra property on the Labrador
class. They both need to be passed to the constructor function on Labrador
, which is done correctly using constructor 2.
// index.js
console . log ( 'running index.js' ) ;
import { sum } from './sum.js' ;
console . log ( sum ( 1 , 2 ) ) ;
// sum.js
console . log ( 'running sum.js' ) ;
export const sum = ( a , b ) => a + b ;
running index.js
, running sum.js
, 3
running sum.js
, running index.js
, 3
running sum.js
, 3
, running index.js
running index.js
, undefined
, running sum.js
With the import
keyword, all imported modules are pre-parsed . This means that the imported modules get run first , and the code in the file that imports the module gets executed after .
This is a difference between require()
in CommonJS and import
! With require()
, you can load dependencies on demand while the code is being run. If we had used require
instead of import
, running index.js
, running sum.js
, 3
would have been logged to the console.
console . log ( Number ( 2 ) === Number ( 2 ) ) ;
console . log ( Boolean ( false ) === Boolean ( false ) ) ;
console . log ( Symbol ( 'foo' ) === Symbol ( 'foo' ) ) ;
true
, true
, false
false
, true
, false
true
, false
, true
true
, true
, true
Every Symbol is entirely unique. The purpose of the argument passed to the Symbol is to give the Symbol a description. The value of the Symbol is not dependent on the passed argument. As we test equality, we are creating two entirely new symbols: the first Symbol('foo')
, and the second Symbol('foo')
. These two values are unique and not equal to each other, Symbol('foo') === Symbol('foo')
returns false
.
const name = 'Lydia Hallie' ;
console . log ( name . padStart ( 13 ) ) ;
console . log ( name . padStart ( 2 ) ) ;
"Lydia Hallie"
, "Lydia Hallie"
" Lydia Hallie"
, " Lydia Hallie"
( "[13x whitespace]Lydia Hallie"
, "[2x whitespace]Lydia Hallie"
)" Lydia Hallie"
, "Lydia Hallie"
( "[1x whitespace]Lydia Hallie"
, "Lydia Hallie"
)"Lydia Hallie"
, "Lyd"
, With the padStart
method, we can add padding to the beginning of a string. The value passed to this method is the total length of the string together with the padding. The string "Lydia Hallie"
has a length of 12
. name.padStart(13)
inserts 1 space at the start of the string, because 12 + 1 is 13.
If the argument passed to the padStart
method is smaller than the length of the array, no padding will be added.
console . log ( '?' + '' ) ;
"?"
257548
With the +
operator, you can concatenate strings. In this case, we are concatenating the string "?"
with the string ""
, resulting in "?"
。
function * startGame ( ) {
const answer = yield 'Do you love JavaScript?' ;
if ( answer !== 'Yes' ) {
return "Oh wow... Guess we're done here" ;
}
return 'JavaScript loves you back ❤️' ;
}
const game = startGame ( ) ;
console . log ( /* 1 */ ) ; // Do you love JavaScript?
console . log ( /* 2 */ ) ; // JavaScript loves you back ❤️
game.next("Yes").value
and game.next().value
game.next.value("Yes")
and game.next.value()
game.next().value
and game.next("Yes").value
game.next.value()
and game.next.value("Yes")
A generator function "pauses" its execution when it sees the yield
keyword. First, we have to let the function yield the string "Do you love JavaScript?", which can be done by calling game.next().value
.
Every line is executed, until it finds the first yield
keyword. There is a yield
keyword on the first line within the function: the execution stops with the first yield! This means that the variable answer
is not defined yet!
When we call game.next("Yes").value
, the previous yield
is replaced with the value of the parameters passed to the next()
function, "Yes"
in this case. The value of the variable answer
is now equal to "Yes"
. The condition of the if-statement returns false
, and JavaScript loves you back ❤️
gets logged.
console . log ( String . raw `Hellonworld` ) ;
Hello world!
Hello
world
Hellonworld
Hellon
world
String.raw
returns a string where the escapes ( n
, v
, t
etc.) are ignored! Backslashes can be an issue since you could end up with something like:
const path = `C:DocumentsProjectstable.html`
Which would result in:
"C:DocumentsProjects able.html"
With String.raw
, it would simply ignore the escape and print:
C:DocumentsProjectstable.html
In this case, the string is Hellonworld
, which gets logged.
async function getData ( ) {
return await Promise . resolve ( 'I made it!' ) ;
}
const data = getData ( ) ;
console . log ( data ) ;
"I made it!"
Promise {<resolved>: "I made it!"}
Promise {<pending>}
undefined
An async function always returns a promise. The await
still has to wait for the promise to resolve: a pending promise gets returned when we call getData()
in order to set data
equal to it.
If we wanted to get access to the resolved value "I made it"
, we could have used the .then()
method on data
:
data.then(res => console.log(res))
This would've logged "I made it!"
function addToList ( item , list ) {
return list . push ( item ) ;
}
const result = addToList ( 'apple' , [ 'banana' ] ) ;
console . log ( result ) ;
['apple', 'banana']
2
true
undefined
The .push()
method returns the length of the new array! Previously, the array contained one element (the string "banana"
) and had a length of 1
. After adding the string "apple"
to the array, the array contains two elements, and has a length of 2
. This gets returned from the addToList
function.
The push
method modifies the original array. If you wanted to return the array from the function rather than the length of the array , you should have returned list
after pushing item
to it.
const box = { x : 10 , y : 20 } ;
Object . freeze ( box ) ;
const shape = box ;
shape . x = 100 ;
console . log ( shape ) ;
{ x: 100, y: 20 }
{ x: 10, y: 20 }
{ x: 100 }
ReferenceError
Object.freeze
makes it impossible to add, remove, or modify properties of an object (unless the property's value is another object).
When we create the variable shape
and set it equal to the frozen object box
, shape
also refers to a frozen object. You can check whether an object is frozen by using Object.isFrozen
. In this case, Object.isFrozen(shape)
would return true, since the variable shape
has a reference to a frozen object.
Since shape
is frozen, and since the value of x
is not an object, we cannot modify the property x
. x
is still equal to 10
, and { x: 10, y: 20 }
gets logged.
const { firstName : myName } = { firstName : 'Lydia' } ;
console . log ( firstName ) ;
"Lydia"
"myName"
undefined
ReferenceError
By using destructuring assignment syntax we can unpack values from arrays, or properties from objects, into distinct variables:
const { firstName } = { firstName : 'Lydia' } ;
// ES5 version:
// var firstName = { firstName: 'Lydia' }.firstName;
console . log ( firstName ) ; // "Lydia"
Also, a property can be unpacked from an object and assigned to a variable with a different name than the object property:
const { firstName : myName } = { firstName : 'Lydia' } ;
// ES5 version:
// var myName = { firstName: 'Lydia' }.firstName;
console . log ( myName ) ; // "Lydia"
console . log ( firstName ) ; // Uncaught ReferenceError: firstName is not defined
Therefore, firstName
does not exist as a variable, thus attempting to access its value will raise a ReferenceError
.
Note: Be aware of the global scope
properties:
const { name : myName } = { name : 'Lydia' } ;
console . log ( myName ) ; // "lydia"
console . log ( name ) ; // "" ----- Browser e.g. Chrome
console . log ( name ) ; // ReferenceError: name is not defined ----- NodeJS
Whenever Javascript is unable to find a variable within the current scope , it climbs up the Scope chain and searches for it and if it reaches the top-level scope, aka Global scope , and still doesn't find it, it will throw a ReferenceError
。
In Browsers such as Chrome , name
is a deprecated global scope property . In this example, the code is running inside global scope and there is no user-defined local variable for name
, therefore it searches the predefined variables/properties in the global scope which is in the case of browsers, it searches through window
object and it will extract the window.name value which is equal to an empty string .
In NodeJS , there is no such property on the global
object, thus attempting to access a non-existent variable will raise a ReferenceError.
function sum ( a , b ) {
return a + b ;
}
A pure function is a function that always returns the same result, if the same arguments are passed.
The sum
function always returns the same result. If we pass 1
and 2
, it will always return 3
without side effects. If we pass 5
and 10
, it will always return 15
, and so on. This is the definition of a pure function.
const add = ( ) => {
const cache = { } ;
return num => {
if ( num in cache ) {
return `From cache! ${ cache [ num ] } ` ;
} else {
const result = num + 10 ;
cache [ num ] = result ;
return `Calculated! ${ result } ` ;
}
} ;
} ;
const addFunction = add ( ) ;
console . log ( addFunction ( 10 ) ) ;
console . log ( addFunction ( 10 ) ) ;
console . log ( addFunction ( 5 * 2 ) ) ;
Calculated! 20
Calculated! 20
Calculated! 20
Calculated! 20
From cache! 20
Calculated! 20
Calculated! 20
From cache! 20
From cache! 20
Calculated! 20
From cache! 20
Error
The add
function is a memoized function. With memoization, we can cache the results of a function in order to speed up its execution. In this case, we create a cache
object that stores the previously returned values.
If we call the addFunction
function again with the same argument, it first checks whether it has already gotten that value in its cache. If that's the case, the cache value will be returned, which saves execution time. Otherwise, if it's not cached, it will calculate the value and store it afterward.
We call the addFunction
function three times with the same value: on the first invocation, the value of the function when num
is equal to 10
isn't cached yet. The condition of the if-statement num in cache
returns false
, and the else block gets executed: Calculated! 20
gets logged, and the value of the result gets added to the cache object. cache
now looks like { 10: 20 }
.
The second time, the cache
object contains the value that gets returned for 10
. The condition of the if-statement num in cache
returns true
, and 'From cache! 20'
gets logged.
The third time, we pass 5 * 2
to the function which gets evaluated to 10
. The cache
object contains the value that gets returned for 10
. The condition of the if-statement num in cache
returns true
, and 'From cache! 20'
gets logged.
const myLifeSummedUp = [ '☕' , '' , '?' , '?' ] ;
for ( let item in myLifeSummedUp ) {
console . log ( item ) ;
}
for ( let item of myLifeSummedUp ) {
console . log ( item ) ;
}
0
1
2
3
and "☕"
""
"?"
"?"
"☕"
""
"?"
"?"
and "☕"
""
"?"
"?"
"☕"
""
"?"
"?"
and 0
1
2
3
0
1
2
3
and {0: "☕", 1: "", 2: "?", 3: "?"}
With a for-in loop, we can iterate over enumerable properties. In an array, the enumerable properties are the "keys" of array elements, which are actually their indexes. You could see an array as:
{0: "☕", 1: "", 2: "?", 3: "?"}
Where the keys are the enumerable properties. 0
1
2
3
get logged.
With a for-of loop, we can iterate over iterables . An array is an iterable. When we iterate over the array, the variable "item" is equal to the element it's currently iterating over, "☕"
""
"?"
"?"
get logged.
const list = [ 1 + 2 , 1 * 2 , 1 / 2 ] ;
console . log ( list ) ;
["1 + 2", "1 * 2", "1 / 2"]
["12", 2, 0.5]
[3, 2, 0.5]
[1, 1, 1]
Array elements can hold any value. Numbers, strings, objects, other arrays, null, boolean values, undefined, and other expressions such as dates, functions, and calculations.
The element will be equal to the returned value. 1 + 2
returns 3
, 1 * 2
returns 2
, and 1 / 2
returns 0.5
.
function sayHi ( name ) {
return `Hi there, ${ name } ` ;
}
console . log ( sayHi ( ) ) ;
Hi there,
Hi there, undefined
Hi there, null
ReferenceError
By default, arguments have the value of undefined
, unless a value has been passed to the function. In this case, we didn't pass a value for the name
argument. name
is equal to undefined
which gets logged.
In ES6, we can overwrite this default undefined
value with default parameters.例えば:
function sayHi(name = "Lydia") { ... }
In this case, if we didn't pass a value or if we passed undefined
, name
would always be equal to the string Lydia
var status = '?' ;
setTimeout ( ( ) => {
const status = '?' ;
const data = {
status : '?' ,
getStatus ( ) {
return this . status ;
} ,
} ;
console . log ( data . getStatus ( ) ) ;
console . log ( data . getStatus . call ( this ) ) ;
} , 0 ) ;
"?"
そして"?"
"?"
そして"?"
"?"
そして"?"
"?"
そして"?"
The value of the this
keyword is dependent on where you use it. In a method , like the getStatus
method, the this
keyword refers to the object that the method belongs to . The method belongs to the data
object, so this
refers to the data
object. When we log this.status
, the status
property on the data
object gets logged, which is "?"
。
With the call
method, we can change the object to which the this
keyword refers. In functions , the this
keyword refers to the the object that the function belongs to . We declared the setTimeout
function on the global object , so within the setTimeout
function, the this
keyword refers to the global object . On the global object, there is a variable called status with the value of "?"
。 When logging this.status
, "?"
gets logged.
const person = {
name : 'Lydia' ,
age : 21 ,
} ;
let city = person . city ;
city = 'Amsterdam' ;
console . log ( person ) ;
{ name: "Lydia", age: 21 }
{ name: "Lydia", age: 21, city: "Amsterdam" }
{ name: "Lydia", age: 21, city: undefined }
"Amsterdam"
We set the variable city
equal to the value of the property called city
on the person
object. There is no property on this object called city
, so the variable city
has the value of undefined
.
Note that we are not referencing the person
object itself! We simply set the variable city
equal to the current value of the city
property on the person
object.
Then, we set city
equal to the string "Amsterdam"
. This doesn't change the person object: there is no reference to that object.
When logging the person
object, the unmodified object gets returned.
function checkAge ( age ) {
if ( age < 18 ) {
const message = "Sorry, you're too young." ;
} else {
const message = "Yay! You're old enough!" ;
}
return message ;
}
console . log ( checkAge ( 21 ) ) ;
"Sorry, you're too young."
"Yay! You're old enough!"
ReferenceError
undefined
Variables with the const
and let
keywords are block-scoped . A block is anything between curly brackets ( { }
). In this case, the curly brackets of the if/else statements. You cannot reference a variable outside of the block it's declared in, a ReferenceError gets thrown.
fetch ( 'https://www.website.com/api/user/1' )
. then ( res => res . json ( ) )
. then ( res => console . log ( res ) ) ;
fetch
method.fetch
method..then()
. The value of res
in the second .then
is equal to the returned value of the previous .then
. You can keep chaining .then
s like this, where the value is passed to the next handler.
hasName
equal to true
, provided you cannot pass true
as an argument? function getName ( name ) {
const hasName = //
}
!!name
name
new Boolean(name)
name.length
With !!name
, we determine whether the value of name
is truthy or falsy. If the name is truthy, which we want to test for, !name
returns false
. !false
(which is what !!name
practically is) returns true
.
By setting hasName
equal to name
, you set hasName
equal to whatever value you passed to the getName
function, not the boolean value true
.
new Boolean(true)
returns an object wrapper, not the boolean value itself.
name.length
returns the length of the passed argument, not whether it's true
.
console . log ( 'I want pizza' [ 0 ] ) ;
"""
"I"
SyntaxError
undefined
In order to get a character at a specific index of a string, you can use bracket notation. The first character in the string has index 0, and so on. In this case, we want to get the element with index 0, the character "I'
, which gets logged.
Note that this method is not supported in IE7 and below. In that case, use .charAt()
.
function sum ( num1 , num2 = num1 ) {
console . log ( num1 + num2 ) ;
}
sum ( 10 ) ;
NaN
20
ReferenceError
undefined
You can set a default parameter's value equal to another parameter of the function, as long as they've been defined before the default parameter. We pass the value 10
to the sum
function. If the sum
function only receives 1 argument, it means that the value for num2
is not passed, and the value of num1
is equal to the passed value 10
in this case. The default value of num2
is the value of num1
, which is 10
. num1 + num2
returns 20
.
If you're trying to set a default parameter's value equal to a parameter that is defined after (to the right), the parameter's value hasn't been initialized yet, which will throw an error.
// module.js
export default ( ) => 'Hello world' ;
export const name = 'Lydia' ;
// index.js
import * as data from './module' ;
console . log ( data ) ;
{ default: function default(), name: "Lydia" }
{ default: function default() }
{ default: "Hello world", name: "Lydia" }
module.js
With the import * as name
syntax, we import all exports from the module.js
file into the index.js
file as a new object called data
is created. In the module.js
file, there are two exports: the default export, and a named export. The default export is a function that returns the string "Hello World"
, and the named export is a variable called name
which has the value of the string "Lydia"
.
The data
object has a default
property for the default export, other properties have the names of the named exports and their corresponding values.
class Person {
constructor ( name ) {
this . name = name ;
}
}
const member = new Person ( 'John' ) ;
console . log ( typeof member ) ;
"class"
"function"
"object"
"string"
Classes are syntactical sugar for function constructors. The equivalent of the Person
class as a function constructor would be:
function Person ( name ) {
this . name = name ;
}
Calling a function constructor with new
results in the creation of an instance of Person
, typeof
keyword returns "object"
for an instance. typeof member
returns "object"
.
let newList = [ 1 , 2 , 3 ] . push ( 4 ) ;
console . log ( newList . push ( 5 ) ) ;
[1, 2, 3, 4, 5]
[1, 2, 3, 5]
[1, 2, 3, 4]
Error
The .push
method returns the new length of the array, not the array itself! By setting newList
equal to [1, 2, 3].push(4)
, we set newList
equal to the new length of the array: 4
.
Then, we try to use the .push
method on newList
. Since newList
is the numerical value 4
, we cannot use the .push
method: a TypeError is thrown.
function giveLydiaPizza ( ) {
return 'Here is pizza!' ;
}
const giveLydiaChocolate = ( ) =>
"Here's chocolate... now go hit the gym already." ;
console . log ( giveLydiaPizza . prototype ) ;
console . log ( giveLydiaChocolate . prototype ) ;
{ constructor: ...}
{ constructor: ...}
{}
{ constructor: ...}
{ constructor: ...}
{}
{ constructor: ...}
undefined
Regular functions, such as the giveLydiaPizza
function, have a prototype
property, which is an object (prototype object) with a constructor
property. Arrow functions however, such as the giveLydiaChocolate
function, do not have this prototype
property. undefined
gets returned when trying to access the prototype
property using giveLydiaChocolate.prototype
.
const person = {
name : 'Lydia' ,
age : 21 ,
} ;
for ( const [ x , y ] of Object . entries ( person ) ) {
console . log ( x , y ) ;
}
name
Lydia
and age
21
["name", "Lydia"]
and ["age", 21]
["name", "age"]
and undefined
Error
Object.entries(person)
returns an array of nested arrays, containing the keys and objects:
[ [ 'name', 'Lydia' ], [ 'age', 21 ] ]
Using the for-of
loop, we can iterate over each element in the array, the subarrays in this case. We can destructure the subarrays instantly in the for-of loop, using const [x, y]
. x
is equal to the first element in the subarray, y
is equal to the second element in the subarray.
The first subarray is [ "name", "Lydia" ]
, with x
equal to "name"
, and y
equal to "Lydia"
, which get logged. The second subarray is [ "age", 21 ]
, with x
equal to "age"
, and y
equal to 21
, which get logged.
function getItems ( fruitList , ... args , favoriteFruit ) {
return [ ... fruitList , ... args , favoriteFruit ]
}
getItems ( [ "banana" , "apple" ] , "pear" , "orange" )
["banana", "apple", "pear", "orange"]
[["banana", "apple"], "pear", "orange"]
["banana", "apple", ["pear"], "orange"]
SyntaxError
...args
is a rest parameter. The rest parameter's value is an array containing all remaining arguments, and can only be the last parameter ! In this example, the rest parameter was the second parameter. This is not possible, and will throw a syntax error.
function getItems ( fruitList , favoriteFruit , ... args ) {
return [ ... fruitList , ... args , favoriteFruit ] ;
}
getItems ( [ 'banana' , 'apple' ] , 'pear' , 'orange' ) ;
The above example works. This returns the array [ 'banana', 'apple', 'orange', 'pear' ]
function nums ( a , b ) {
if ( a > b ) console . log ( 'a is bigger' ) ;
else console . log ( 'b is bigger' ) ;
return
a + b ;
}
console . log ( nums ( 4 , 2 ) ) ;
console . log ( nums ( 1 , 2 ) ) ;
a is bigger
, 6
and b is bigger
, 3
a is bigger
, undefined
and b is bigger
, undefined
undefined
and undefined
SyntaxError
In JavaScript, we don't have to write the semicolon ( ;
) explicitly, however the JavaScript engine still adds them after statements. This is called Automatic Semicolon Insertion . A statement can for example be variables, or keywords like throw
, return
, break
, etc.
Here, we wrote a return
statement, and another value a + b
on a new line . However, since it's a new line, the engine doesn't know that it's actually the value that we wanted to return. Instead, it automatically added a semicolon after return
. You could see this as:
return ;
a + b ;
This means that a + b
is never reached, since a function stops running after the return
keyword. If no value gets returned, like here, the function returns undefined
. Note that there is no automatic insertion after if/else
statements!
class Person {
constructor ( ) {
this . name = 'Lydia' ;
}
}
Person = class AnotherPerson {
constructor ( ) {
this . name = 'Sarah' ;
}
} ;
const member = new Person ( ) ;
console . log ( member . name ) ;
"Lydia"
"Sarah"
Error: cannot redeclare Person
SyntaxError
We can set classes equal to other classes/function constructors. In this case, we set Person
equal to AnotherPerson
. The name on this constructor is Sarah
, so the name property on the new Person
instance member
is "Sarah"
.
const info = {
[ Symbol ( 'a' ) ] : 'b' ,
} ;
console . log ( info ) ;
console . log ( Object . keys ( info ) ) ;
{Symbol('a'): 'b'}
and ["{Symbol('a')"]
{}
and []
{ a: "b" }
and ["a"]
{Symbol('a'): 'b'}
and []
A Symbol is not enumerable . The Object.keys method returns all enumerable key properties on an object. The Symbol won't be visible, and an empty array is returned. When logging the entire object, all properties will be visible, even non-enumerable ones.
This is one of the many qualities of a symbol: besides representing an entirely unique value (which prevents accidental name collision on objects, for example when working with 2 libraries that want to add properties to the same object), you can also "hide" properties on objects this way (although not entirely. You can still access symbols using the Object.getOwnPropertySymbols()
method).
const getList = ( [ x , ... y ] ) => [ x , y ]
const getUser = user => { name : user . name , age : user . age }
const list = [ 1 , 2 , 3 , 4 ]
const user = { name : "Lydia" , age : 21 }
console . log ( getList ( list ) )
console . log ( getUser ( user ) )
[1, [2, 3, 4]]
and SyntaxError
[1, [2, 3, 4]]
and { name: "Lydia", age: 21 }
[1, 2, 3, 4]
and { name: "Lydia", age: 21 }
Error
and { name: "Lydia", age: 21 }
The getList
function receives an array as its argument. Between the parentheses of the getList
function, we destructure this array right away. You could see this as:
[x, ...y] = [1, 2, 3, 4]
With the rest parameter ...y
, we put all "remaining" arguments in an array. The remaining arguments are 2
, 3
and 4
in this case. The value of y
is an array, containing all the rest parameters. The value of x
is equal to 1
in this case, so when we log [x, y]
, [1, [2, 3, 4]]
gets logged.
The getUser
function receives an object. With arrow functions, we don't have to write curly brackets if we just return one value. However, if you want to instantly return an object from an arrow function, you have to write it between parentheses, otherwise everything between the two braces will be interpreted as a block statement. In this case the code between the braces is not a valid JavaScript code, so a SyntaxError
gets thrown.
The following function would have returned an object:
const getUser = user => ({ name: user.name, age: user.age })
const name = 'Lydia' ;
console . log ( name ( ) ) ;
SyntaxError
ReferenceError
TypeError
undefined
The variable name
holds the value of a string, which is not a function, and thus cannot be invoked.
TypeErrors get thrown when a value is not of the expected type. JavaScript expected name
to be a function since we're trying to invoke it. It was a string however, so a TypeError gets thrown: name is not a function!
SyntaxErrors get thrown when you've written something that isn't valid JavaScript, for example when you've written the word return
as retrun
. ReferenceErrors get thrown when JavaScript isn't able to find a reference to a value that you're trying to access.
// ? This is my 100th question! ?
const output = ` ${ [ ] && 'Im' } possible!
You should ${ '' && `n't` } see a therapist after so much JavaScript lol` ;
possible! You should see a therapist after so much JavaScript lol
Impossible! You should see a therapist after so much JavaScript lol
possible! You shouldn't see a therapist after so much JavaScript lol
Impossible! You shouldn't see a therapist after so much JavaScript lol
[]
is a truthy value. With the &&
operator, the right-hand value will be returned if the left-hand value is a truthy value. In this case, the left-hand value []
is a truthy value, so "Im'
gets returned.
""
is a falsy value. If the left-hand value is falsy, nothing gets returned. n't
doesn't get returned.
const one = false || { } || null ;
const two = null || false || '' ;
const three = [ ] || 0 || true ;
console . log ( one , two , three ) ;
false
null
[]
null
""
true
{}
""
[]
null
null
true
With the ||
operator, we can return the first truthy operand. If all values are falsy, the last operand gets returned.
(false || {} || null)
: the empty object {}
is a truthy value. This is the first (and only) truthy value, which gets returned. one
is equal to {}
.
(null || false || "")
: all operands are falsy values. This means that the last operand, ""
gets returned. two
is equal to ""
.
([] || 0 || "")
: the empty array []
is a truthy value. This is the first truthy value, which gets returned. three
is equal to []
.
const myPromise = ( ) => Promise . resolve ( 'I have resolved!' ) ;
function firstFunction ( ) {
myPromise ( ) . then ( res => console . log ( res ) ) ;
console . log ( 'second' ) ;
}
async function secondFunction ( ) {
console . log ( await myPromise ( ) ) ;
console . log ( 'second' ) ;
}
firstFunction ( ) ;
secondFunction ( ) ;
I have resolved!
, second
and I have resolved!
、 second
second
, I have resolved!
and second
, I have resolved!
I have resolved!
, second
and second
, I have resolved!
second
, I have resolved!
and I have resolved!
、 second
With a promise, we basically say I want to execute this function, but I'll put it aside for now while it's running since this might take a while. Only when a certain value is resolved (or rejected), and when the call stack is empty, I want to use this value.
We can get this value with both .then
and the await
keywords in an async
function. Although we can get a promise's value with both .then
and await
, they work a bit differently.
In the firstFunction
, we (sort of) put the myPromise function aside while it was running, but continued running the other code, which is console.log('second')
in this case. Then, the function resolved with the string I have resolved
, which then got logged after it saw that the callstack was empty.
With the await keyword in secondFunction
, we literally pause the execution of an async function until the value has been resolved before moving to the next line.
This means that it waited for the myPromise
to resolve with the value I have resolved
, and only once that happened, we moved to the next line: second
got logged.
const set = new Set ( ) ;
set . add ( 1 ) ;
set . add ( 'Lydia' ) ;
set . add ( { name : 'Lydia' } ) ;
for ( let item of set ) {
console . log ( item + 2 ) ;
}
3
, NaN
, NaN
3
, 7
, NaN
3
, Lydia2
, [object Object]2
"12"
, Lydia2
, [object Object]2
The +
operator is not only used for adding numerical values, but we can also use it to concatenate strings. Whenever the JavaScript engine sees that one or more values are not a number, it coerces the number into a string.
The first one is 1
, which is a numerical value. 1 + 2
returns the number 3.
However, the second one is a string "Lydia"
. "Lydia"
is a string and 2
is a number: 2
gets coerced into a string. "Lydia"
and "2"
get concatenated, which results in the string "Lydia2"
.
{ name: "Lydia" }
is an object. Neither a number nor an object is a string, so it stringifies both. Whenever we stringify a regular object, it becomes "[object Object]"
. "[object Object]"
concatenated with "2"
becomes "[object Object]2"
.
Promise . resolve ( 5 ) ;
5
Promise {<pending>: 5}
Promise {<fulfilled>: 5}
Error
We can pass any type of value we want to Promise.resolve
, either a promise or a non-promise. The method itself returns a promise with the resolved value ( <fulfilled>
). If you pass a regular function, it'll be a resolved promise with a regular value. If you pass a promise, it'll be a resolved promise with the resolved value of that passed promise.
In this case, we just passed the numerical value 5
. It returns a resolved promise with the value 5
.
function compareMembers ( person1 , person2 = person ) {
if ( person1 !== person2 ) {
console . log ( 'Not the same!' ) ;
} else {
console . log ( 'They are the same!' ) ;
}
}
const person = { name : 'Lydia' } ;
compareMembers ( person ) ;
Not the same!
They are the same!
ReferenceError
SyntaxError
Objects are passed by reference. When we check objects for strict equality ( ===
), we're comparing their references.
We set the default value for person2
equal to the person
object, and passed the person
object as the value for person1
.
This means that both values have a reference to the same spot in memory, thus they are equal.
The code block in the else
statement gets run, and They are the same!
gets logged.
const colorConfig = {
red : true ,
blue : false ,
green : true ,
black : true ,
yellow : false ,
} ;
const colors = [ 'pink' , 'red' , 'blue' ] ;
console . log ( colorConfig . colors [ 1 ] ) ;
true
false
undefined
TypeError
In JavaScript, we have two ways to access properties on an object: bracket notation, or dot notation. In this example, we use dot notation ( colorConfig.colors
) instead of bracket notation ( colorConfig["colors"]
).
With dot notation, JavaScript tries to find the property on the object with that exact name. In this example, JavaScript tries to find a property called colors
on the colorConfig
object. There is no property called colors
, so this returns undefined
. Then, we try to access the value of the first element by using [1]
. We cannot do this on a value that's undefined
, so it throws a TypeError
: Cannot read property '1' of undefined
.
JavaScript interprets (or unboxes) statements. When we use bracket notation, it sees the first opening bracket [
and keeps going until it finds the closing bracket ]
. Only then, it will evaluate the statement. If we would've used colorConfig[colors[1]]
, it would have returned the value of the red
property on the colorConfig
object.
console . log ( '❤️' === '❤️' ) ;
true
false
Under the hood, emojis are unicodes. The unicodes for the heart emoji is "U+2764 U+FE0F"
. These are always the same for the same emojis, so we're comparing two equal strings to each other, which returns true.
const emojis = [ '' , '?' , '?' ] ;
emojis . map ( x => x + '' ) ;
emojis . filter ( x => x !== '?' ) ;
emojis . find ( x => x !== '?' ) ;
emojis . reduce ( ( acc , cur ) => acc + '' ) ;
emojis . slice ( 1 , 2 , '' ) ;
emojis . splice ( 1 , 2 , '' ) ;
All of them
map
reduce
slice
splice
map
slice
splice
splice
With splice
method, we modify the original array by deleting, replacing or adding elements. In this case, we removed 2 items from index 1 (we removed '?'
and '?'
) and added the emoji instead.
map
, filter
and slice
return a new array, find
returns an element, and reduce
returns a reduced value.
const food = [ '?' , '?' , '?' , '?' ] ;
const info = { favoriteFood : food [ 0 ] } ;
info . favoriteFood = '?' ;
console . log ( food ) ;
['?', '?', '?', '?']
['?', '?', '?', '?']
['?', '?', '?', '?', '?']
ReferenceError
We set the value of the favoriteFood
property on the info
object equal to the string with the pizza emoji, '?'
。 A string is a primitive data type. In JavaScript, primitive data types don't interact by reference.
In JavaScript, primitive data types (everything that's not an object) interact by value . In this case, we set the value of the favoriteFood
property on the info
object equal to the value of the first element in the food
array, the string with the pizza emoji in this case ( '?'
). A string is a primitive data type, and interact by value (see my blogpost if you're interested in learning more)
Then, we change the value of the favoriteFood
property on the info
object. The food
array hasn't changed, since the value of favoriteFood
was merely a copy of the value of the first element in the array, and doesn't have a reference to the same spot in memory as the element on food[0]
. When we log food, it's still the original array, ['?', '?', '?', '?']
.
JSON . parse ( ) ;
With the JSON.parse()
method, we can parse JSON string to a JavaScript value.
// Stringifying a number into valid JSON, then parsing the JSON string to a JavaScript value:
const jsonNumber = JSON . stringify ( 4 ) ; // '4'
JSON . parse ( jsonNumber ) ; // 4
// Stringifying an array value into valid JSON, then parsing the JSON string to a JavaScript value:
const jsonArray = JSON . stringify ( [ 1 , 2 , 3 ] ) ; // '[1, 2, 3]'
JSON . parse ( jsonArray ) ; // [1, 2, 3]
// Stringifying an object into valid JSON, then parsing the JSON string to a JavaScript value:
const jsonArray = JSON . stringify ( { name : 'Lydia' } ) ; // '{"name":"Lydia"}'
JSON . parse ( jsonArray ) ; // { name: 'Lydia' }
let name = 'Lydia' ;
function getName ( ) {
console . log ( name ) ;
let name = 'Sarah' ;
}
getName ( ) ;
undefined
ReferenceError
Each function has its own execution context (or scope ). The getName
function first looks within its own context (scope) to see if it contains the variable name
we're trying to access. In this case, the getName
function contains its own name
variable: we declare the variable name
with the let
keyword, and with the value of 'Sarah'
.
Variables with the let
keyword (and const
) are hoisted, but unlike var
, don't get initialized . They are not accessible before the line we declare (initialize) them. This is called the "temporal dead zone". When we try to access the variables before they are declared, JavaScript throws a ReferenceError
.
If we wouldn't have declared the name
variable within the getName
function, the javascript engine would've looked down the scope chain . The outer scope has a variable called name
with the value of Lydia
. In that case, it would've logged Lydia
.
let name = 'Lydia' ;
function getName ( ) {
console . log ( name ) ;
}
getName ( ) ; // Lydia
function * generatorOne ( ) {
yield [ 'a' , 'b' , 'c' ] ;
}
function * generatorTwo ( ) {
yield * [ 'a' , 'b' , 'c' ] ;
}
const one = generatorOne ( ) ;
const two = generatorTwo ( ) ;
console . log ( one . next ( ) . value ) ;
console . log ( two . next ( ) . value ) ;
a
and a
a
and undefined
['a', 'b', 'c']
and a
a
and ['a', 'b', 'c']
With the yield
keyword, we yield
values in a generator function. With the yield*
keyword, we can yield values from another generator function, or iterable object (for example an array).
In generatorOne
, we yield the entire array ['a', 'b', 'c']
using the yield
keyword. The value of value
property on the object returned by the next
method on one
( one.next().value
) is equal to the entire array ['a', 'b', 'c']
.
console . log ( one . next ( ) . value ) ; // ['a', 'b', 'c']
console . log ( one . next ( ) . value ) ; // undefined
In generatorTwo
, we use the yield*
keyword. This means that the first yielded value of two
, is equal to the first yielded value in the iterator. The iterator is the array ['a', 'b', 'c']
. The first yielded value is a
, so the first time we call two.next().value
, a
is returned.
console . log ( two . next ( ) . value ) ; // 'a'
console . log ( two . next ( ) . value ) ; // 'b'
console . log ( two . next ( ) . value ) ; // 'c'
console . log ( two . next ( ) . value ) ; // undefined
console . log ( ` ${ ( x => x ) ( 'I love' ) } to program` ) ;
I love to program
undefined to program
${(x => x)('I love') to program
TypeError
Expressions within template literals are evaluated first. This means that the string will contain the returned value of the expression, the immediately invoked function (x => x)('I love')
in this case. We pass the value 'I love'
as an argument to the x => x
arrow function. x
is equal to 'I love'
, which gets returned. This results in I love to program
.
let config = {
alert : setInterval ( ( ) => {
console . log ( 'Alert!' ) ;
} , 1000 ) ,
} ;
config = null ;
setInterval
callback won't be invokedsetInterval
callback gets invoked oncesetInterval
callback will still be called every secondconfig.alert()
, config is null
Normally when we set objects equal to null
, those objects get garbage collected as there is no reference anymore to that object. However, since the callback function within setInterval
is an arrow function (thus bound to the config
object), the callback function still holds a reference to the config
object. As long as there is a reference, the object won't get garbage collected. Since this is an interval, setting config
to null
or delete
-ing config.alert
won't garbage-collect the interval, so the interval will still be called. It should be cleared with clearInterval(config.alert)
to remove it from memory. Since it was not cleared, the setInterval
callback function will still get invoked every 1000ms (1s).
'Hello world!'
? const myMap = new Map ( ) ;
const myFunc = ( ) => 'greeting' ;
myMap . set ( myFunc , 'Hello world!' ) ;
//1
myMap . get ( 'greeting' ) ;
//2
myMap . get ( myFunc ) ;
//3
myMap . get ( ( ) => 'greeting' ) ;
When adding a key/value pair using the set
method, the key will be the value of the first argument passed to the set
function, and the value will be the second argument passed to the set
function. The key is the function () => 'greeting'
in this case, and the value 'Hello world'
. myMap
is now { () => 'greeting' => 'Hello world!' }
.
1 is wrong, since the key is not 'greeting'
but () => 'greeting'
. 3 is wrong, since we're creating a new function by passing it as a parameter to the get
method. Object interacts by reference . Functions are objects, which is why two functions are never strictly equal, even if they are identical: they have a reference to a different spot in memory.
const person = {
name : 'Lydia' ,
age : 21 ,
} ;
const changeAge = ( x = { ... person } ) => ( x . age += 1 ) ;
const changeAgeAndName = ( x = { ... person } ) => {
x . age += 1 ;
x . name = 'Sarah' ;
} ;
changeAge ( person ) ;
changeAgeAndName ( ) ;
console . log ( person ) ;
{name: "Sarah", age: 22}
{name: "Sarah", age: 23}
{name: "Lydia", age: 22}
{name: "Lydia", age: 23}
Both the changeAge
and changeAgeAndName
functions have a default parameter, namely a newly created object { ...person }
. This object has copies of all the key/values in the person
object.
First, we invoke the changeAge
function and pass the person
object as its argument. This function increases the value of the age
property by 1. person
is now { name: "Lydia", age: 22 }
.
Then, we invoke the changeAgeAndName
function, however we don't pass a parameter. Instead, the value of x
is equal to a new object: { ...person }
. Since it's a new object, it doesn't affect the values of the properties on the person
object. person
is still equal to { name: "Lydia", age: 22 }
.
6
? function sumValues ( x , y , z ) {
return x + y + z ;
}
sumValues([...1, 2, 3])
sumValues([...[1, 2, 3]])
sumValues(...[1, 2, 3])
sumValues([1, 2, 3])
With the spread operator ...
, we can spread iterables to individual elements. The sumValues
function receives three arguments: x
, y
and z
. ...[1, 2, 3]
will result in 1, 2, 3
, which we pass to the sumValues
function.
let num = 1 ;
const list = [ '?' , '?' , '?' , '?' ] ;
console . log ( list [ ( num += 1 ) ] ) ;
?
?
SyntaxError
ReferenceError
With the +=
operator, we're incrementing the value of num
by 1
. num
had the initial value 1
, so 1 + 1
is 2
. The item on the second index in the list
array is ?, console.log(list[2])
prints ?.
const person = {
firstName : 'Lydia' ,
lastName : 'Hallie' ,
pet : {
name : 'Mara' ,
breed : 'Dutch Tulip Hound' ,
} ,
getFullName ( ) {
return ` ${ this . firstName } ${ this . lastName } ` ;
} ,
} ;
console . log ( person . pet ?. name ) ;
console . log ( person . pet ?. family ?. name ) ;
console . log ( person . getFullName ?. ( ) ) ;
console . log ( member . getLastName ?. ( ) ) ;
undefined
undefined
undefined
undefined
Mara
undefined
Lydia Hallie
ReferenceError
Mara
null
Lydia Hallie
null
null
ReferenceError
null
ReferenceError
With the optional chaining operator ?.
, we no longer have to explicitly check whether the deeper nested values are valid or not. If we're trying to access a property on an undefined
or null
value ( nullish ), the expression short-circuits and returns undefined
.
person.pet?.name
: person
has a property named pet
: person.pet
is not nullish. It has a property called name
, and returns Mara
. person.pet?.family?.name
: person
has a property named pet
: person.pet
is not nullish. pet
does not have a property called family
, person.pet.family
is nullish. The expression returns undefined
. person.getFullName?.()
: person
has a property named getFullName
: person.getFullName()
is not nullish and can get invoked, which returns Lydia Hallie
. member.getLastName?.()
: variable member
is non-existent therefore a ReferenceError
gets thrown!
const groceries = [ 'banana' , 'apple' , 'peanuts' ] ;
if ( groceries . indexOf ( 'banana' ) ) {
console . log ( 'We have to buy bananas!' ) ;
} else {
console . log ( `We don't have to buy bananas!` ) ;
}
undefined
1
We passed the condition groceries.indexOf("banana")
to the if-statement. groceries.indexOf("banana")
returns 0
, which is a falsy value. Since the condition in the if-statement is falsy, the code in the else
block runs, and We don't have to buy bananas!
gets logged.
const config = {
languages : [ ] ,
set language ( lang ) {
return this . languages . push ( lang ) ;
} ,
} ;
console . log ( config . language ) ;
function language(lang) { this.languages.push(lang }
0
[]
undefined
The language
method is a setter
. Setters don't hold an actual value, their purpose is to modify properties. When calling a setter
method, undefined
gets returned.
const name = 'Lydia Hallie' ;
console . log ( ! typeof name === 'object' ) ;
console . log ( ! typeof name === 'string' ) ;
false
true
true
false
false
false
true
true
typeof name
returns "string"
. The string "string"
is a truthy value, so !typeof name
returns the boolean value false
. false === "object"
and false === "string"
both return false
.
(If we wanted to check whether the type was (un)equal to a certain type, we should've written !==
instead of !typeof
)
const add = x => y => z => {
console . log ( x , y , z ) ;
return x + y + z ;
} ;
add ( 4 ) ( 5 ) ( 6 ) ;
4
5
6
6
5
4
4
function
function
undefined
undefined
6
The add
function returns an arrow function, which returns an arrow function, which returns an arrow function (still with me?). The first function receives an argument x
with the value of 4
. We invoke the second function, which receives an argument y
with the value 5
. Then we invoke the third function, which receives an argument z
with the value 6
. When we're trying to access the value x
, y
and z
within the last arrow function, the JS engine goes up the scope chain in order to find the values for x
and y
accordingly. This returns 4
5
6
.
async function * range ( start , end ) {
for ( let i = start ; i <= end ; i ++ ) {
yield Promise . resolve ( i ) ;
}
}
( async ( ) => {
const gen = range ( 1 , 3 ) ;
for await ( const item of gen ) {
console . log ( item ) ;
}
} ) ( ) ;
Promise {1}
Promise {2}
Promise {3}
Promise {<pending>}
Promise {<pending>}
Promise {<pending>}
1
2
3
undefined
undefined
undefined
The generator function range
returns an async object with promises for each item in the range we pass: Promise{1}
, Promise{2}
, Promise{3}
. We set the variable gen
equal to the async object, after which we loop over it using a for await ... of
loop. We set the variable item
equal to the returned Promise values: first Promise{1}
, then Promise{2}
, then Promise{3}
. Since we're awaiting the value of item
, the resolved promise, the resolved values of the promises get returned: 1
, 2
, then 3
.
const myFunc = ( { x , y , z } ) => {
console . log ( x , y , z ) ;
} ;
myFunc ( 1 , 2 , 3 ) ;
1
2
3
{1: 1}
{2: 2}
{3: 3}
{ 1: undefined }
undefined
undefined
undefined
undefined
undefined
myFunc
expects an object with properties x
, y
and z
as its argument. Since we're only passing three separate numeric values (1, 2, 3) instead of one object with properties x
, y
and z
({x: 1, y: 2, z: 3}), x
, y
and z
have their default value of undefined
.
function getFine ( speed , amount ) {
const formattedSpeed = new Intl . NumberFormat ( 'en-US' , {
style : 'unit' ,
unit : 'mile-per-hour'
} ) . format ( speed ) ;
const formattedAmount = new Intl . NumberFormat ( 'en-US' , {
style : 'currency' ,
currency : 'USD'
} ) . format ( amount ) ;
return `The driver drove ${ formattedSpeed } and has to pay ${ formattedAmount } ` ;
}
console . log ( getFine ( 130 , 300 ) )
With the Intl.NumberFormat
method, we can format numeric values to any locale. We format the numeric value 130
to the en-US
locale as a unit
in mile-per-hour
, which results in 130 mph
. The numeric value 300
to the en-US
locale as a currency
in USD
results in $300.00
.
const spookyItems = [ '?' , '?' , '?' ] ;
( { item : spookyItems [ 3 ] } = { item : '?' } ) ;
console . log ( spookyItems ) ;
["?", "?", "?"]
["?", "?", "?", "?"]
["?", "?", "?", { item: "?" }]
["?", "?", "?", "[object Object]"]
By destructuring objects, we can unpack values from the right-hand object, and assign the unpacked value to the value of the same property name on the left-hand object. In this case, we're assigning the value "?" to spookyItems[3]
. This means that we're modifying the spookyItems
array, we're adding the "?"それに。 When logging spookyItems
, ["?", "?", "?", "?"]
gets logged.
const name = 'Lydia Hallie' ;
const age = 21 ;
console . log ( Number . isNaN ( name ) ) ;
console . log ( Number . isNaN ( age ) ) ;
console . log ( isNaN ( name ) ) ;
console . log ( isNaN ( age ) ) ;
true
false
true
false
true
false
false
false
false
false
true
false
false
true
false
true
With the Number.isNaN
method, you can check if the value you pass is a numeric value and equal to NaN
. name
is not a numeric value, so Number.isNaN(name)
returns false
. age
is a numeric value, but is not equal to NaN
, so Number.isNaN(age)
returns false
.
With the isNaN
method, you can check if the value you pass is not a number. name
is not a number, so isNaN(name)
returns true. age
is a number, so isNaN(age)
returns false
.
const randomValue = 21 ;
function getInfo ( ) {
console . log ( typeof randomValue ) ;
const randomValue = 'Lydia Hallie' ;
}
getInfo ( ) ;
"number"
"string"
undefined
ReferenceError
Variables declared with the const
keyword are not referenceable before their initialization: this is called the temporal dead zone . In the getInfo
function, the variable randomValue
is scoped in the functional scope of getInfo
. On the line where we want to log the value of typeof randomValue
, the variable randomValue
isn't initialized yet: a ReferenceError
gets thrown! The engine didn't go down the scope chain since we declared the variable randomValue
in the getInfo
function.
const myPromise = Promise . resolve ( 'Woah some cool data' ) ;
( async ( ) => {
try {
console . log ( await myPromise ) ;
} catch {
throw new Error ( `Oops didn't work` ) ;
} finally {
console . log ( 'Oh finally!' ) ;
}
} ) ( ) ;
Woah some cool data
Oh finally!
Woah some cool data
Oh finally!
Oops didn't work
Oh finally!
In the try
block, we're logging the awaited value of the myPromise
variable: "Woah some cool data"
. Since no errors were thrown in the try
block, the code in the catch
block doesn't run. The code in the finally
block always runs, "Oh finally!"
gets logged.
const emojis = [ '?' , [ '' , '' , [ '?' , '?' ] ] ] ;
console . log ( emojis . flat ( 1 ) ) ;
['?', ['', '', ['?', '?']]]
['?', '', '', ['?', '?']]
['?', ['', '', '?', '?']]
['?', '', '', '?', '?']
With the flat
method, we can create a new, flattened array. The depth of the flattened array depends on the value that we pass. In this case, we passed the value 1
(which we didn't have to, that's the default value), meaning that only the arrays on the first depth will be concatenated. ['?']
and ['', '', ['?', '?']]
in this case. Concatenating these two arrays results in ['?', '', '', ['?', '?']]
.
class Counter {
constructor ( ) {
this . count = 0 ;
}
increment ( ) {
this . count ++ ;
}
}
const counterOne = new Counter ( ) ;
counterOne . increment ( ) ;
counterOne . increment ( ) ;
const counterTwo = counterOne ;
counterTwo . increment ( ) ;
console . log ( counterOne . count ) ;
0
1
2
3
counterOne
is an instance of the Counter
class. The counter class contains a count
property on its constructor, and an increment
method. First, we invoked the increment
method twice by calling counterOne.increment()
. Currently, counterOne.count
is 2
.
Then, we create a new variable counterTwo
, and set it equal to counterOne
. Since objects interact by reference, we're just creating a new reference to the same spot in memory that counterOne
points to. Since it has the same spot in memory, any changes made to the object that counterTwo
has a reference to, also apply to counterOne
. Currently, counterTwo.count
is 2
.
We invoke counterTwo.increment()
, which sets count
to 3
. Then, we log the count on counterOne
, which logs 3
.
const myPromise = Promise . resolve ( Promise . resolve ( 'Promise' ) ) ;
function funcOne ( ) {
setTimeout ( ( ) => console . log ( 'Timeout 1!' ) , 0 ) ;
myPromise . then ( res => res ) . then ( res => console . log ( ` ${ res } 1!` ) ) ;
console . log ( 'Last line 1!' ) ;
}
async function funcTwo ( ) {
const res = await myPromise ;
console . log ( ` ${ res } 2!` )
setTimeout ( ( ) => console . log ( 'Timeout 2!' ) , 0 ) ;
console . log ( 'Last line 2!' ) ;
}
funcOne ( ) ;
funcTwo ( ) ;
Promise 1! Last line 1! Promise 2! Last line 2! Timeout 1! Timeout 2!
Last line 1! Timeout 1! Promise 1! Last line 2! Promise2! Timeout 2!
Last line 1! Promise 2! Last line 2! Promise 1! Timeout 1! Timeout 2!
Timeout 1! Promise 1! Last line 1! Promise 2! Timeout 2! Last line 2!
First, we invoke funcOne
. On the first line of funcOne
, we call the asynchronous setTimeout
function, from which the callback is sent to the Web API. (see my article on the event loop here.)
Then we call the myPromise
promise, which is an asynchronous operation. Pay attention, that now only the first then clause was added to the microtask queue.
Both the promise and the timeout are asynchronous operations, the function keeps on running while it's busy completing the promise and handling the setTimeout
callback. This means that Last line 1!
gets logged first, since this is not an asynchonous operation.
Since the callstack is not empty yet, the setTimeout
function and promise in funcOne
cannot get added to the callstack yet.
In funcTwo
, the variable res
gets Promise
because Promise.resolve(Promise.resolve('Promise'))
is equivalent to Promise.resolve('Promise')
since resolving a promise just resolves it's value. The await
in this line stops the execution of the function until it receives the resolution of the promise and then keeps on running synchronously until completion, so Promise 2!
and then Last line 2!
are logged and the setTimeout
is sent to the Web API. If the first then clause in funcOne
had its own log statement, it would be printed before Promise 2!
。 Howewer, it executed silently and put the second then clause in microtask queue. So, the second clause will be printed after Promise 2!
。
Then the call stack is empty. Promises are microtasks so they are resolved first when the call stack is empty so Promise 1!
gets to be logged.
Now, since funcTwo
popped off the call stack, the call stack is empty. The callbacks waiting in the queue ( () => console.log("Timeout 1!")
from funcOne
, and () => console.log("Timeout 2!")
from funcTwo
) get added to the call stack one by 1つ。 The first callback logs Timeout 1!
, and gets popped off the stack. Then, the second callback logs Timeout 2!
, and gets popped off the stack.
sum
in sum.js
from index.js?
// sum.js
export default function sum ( x ) {
return x + x ;
}
// index.js
import * as sum from './sum' ;
sum(4)
sum.sum(4)
sum.default(4)
*
, only named exports With the asterisk *
, we import all exported values from that file, both default and named. If we had the following file:
// info.js
export const name = 'Lydia' ;
export const age = 21 ;
export default 'I love JavaScript' ;
// index.js
import * as info from './info' ;
console . log ( info ) ;
The following would get logged:
{
default : "I love JavaScript" ,
name : "Lydia" ,
age : 21
}
For the sum
example, it means that the imported value sum
looks like this:
{ default : function sum ( x ) { return x + x } }
We can invoke this function, by calling sum.default
const handler = {
set : ( ) => console . log ( 'Added a new property!' ) ,
get : ( ) => console . log ( 'Accessed a property!' ) ,
} ;
const person = new Proxy ( { } , handler ) ;
person . name = 'Lydia' ;
person . name ;
Added a new property!
Accessed a property!
Added a new property!
Accessed a property!
With a Proxy object, we can add custom behavior to an object that we pass to it as the second argument. In this case, we pass the handler
object which contains two properties: set
and get
. set
gets invoked whenever we set property values, and get
gets invoked whenever we get (access) property values.
The first argument is an empty object {}
, which is the value of person
. To this object, the custom behavior specified in the handler
object gets added. If we add a property to the person
object, set
will get invoked. If we access a property on the person
object, get
gets invoked.
First, we added a new property name
to the proxy object ( person.name = "Lydia"
). set
gets invoked, and logs "Added a new property!"
。
Then, we access a property value on the proxy object, and the get
property on the handler object is invoked. "Accessed a property!"
gets logged.
person
object? const person = { name : 'Lydia Hallie' } ;
Object . seal ( person ) ;
person.name = "Evan Bacon"
person.age = 21
delete person.name
Object.assign(person, { age: 21 })
With Object.seal
we can prevent new properties from being added , or existing properties to be removed .
However, you can still modify the value of existing properties.
person
object? const person = {
name : 'Lydia Hallie' ,
address : {
street : '100 Main St' ,
} ,
} ;
Object . freeze ( person ) ;
person.name = "Evan Bacon"
delete person.address
person.address.street = "101 Main St"
person.pet = { name: "Mara" }
The Object.freeze
method freezes an object. No properties can be added, modified, or removed.
However, it only shallowly freezes the object, meaning that only direct properties on the object are frozen. If the property is another object, like address
in this case, the properties on that object aren't frozen, and can be modified.
const add = x => x + x ;
function myFunc ( num = 2 , value = add ( num ) ) {
console . log ( num , value ) ;
}
myFunc ( ) ;
myFunc ( 3 ) ;
2
4
and 3
6
2
NaN
and 3
NaN
2
Error
and 3
6
2
4
and 3
Error
First, we invoked myFunc()
without passing any arguments. Since we didn't pass arguments, num
and value
got their default values: num is 2
, and value
is the returned value of the function add
. To the add
function, we pass num
as an argument, which had the value of 2
. add
returns 4
, which is the value of value
.
Then, we invoked myFunc(3)
and passed the value 3
as the value for the argument num
. We didn't pass an argument for value
. Since we didn't pass a value for the value
argument, it got the default value: the returned value of the add
function. To add
, we pass num
, which has the value of 3
. add
returns 6
, which is the value of value
.
class Counter {
# number = 10
increment ( ) {
this . # number ++
}
getNum ( ) {
return this . # number
}
}
const counter = new Counter ( )
counter . increment ( )
console . log ( counter . # number )
10
11
undefined
SyntaxError
In ES2020, we can add private variables in classes by using the #
. We cannot access these variables outside of the class. When we try to log counter.#number
, a SyntaxError gets thrown: we cannot access it outside the Counter
class!
const teams = [
{ name : 'Team 1' , members : [ 'Paul' , 'Lisa' ] } ,
{ name : 'Team 2' , members : [ 'Laura' , 'Tim' ] } ,
] ;
function * getMembers ( members ) {
for ( let i = 0 ; i < members . length ; i ++ ) {
yield members [ i ] ;
}
}
function * getTeams ( teams ) {
for ( let i = 0 ; i < teams . length ; i ++ ) {
// SOMETHING IS MISSING HERE
}
}
const obj = getTeams ( teams ) ;
obj . next ( ) ; // { value: "Paul", done: false }
obj . next ( ) ; // { value: "Lisa", done: false }
yield getMembers(teams[i].members)
yield* getMembers(teams[i].members)
return getMembers(teams[i].members)
return yield getMembers(teams[i].members)
In order to iterate over the members
in each element in the teams
array, we need to pass teams[i].members
to the getMembers
generator function. The generator function returns a generator object. In order to iterate over each element in this generator object, we need to use yield*
.
If we would've written yield
, return yield
, or return
, the entire generator function would've gotten returned the first time we called the next
method.
const person = {
name : 'Lydia Hallie' ,
hobbies : [ 'coding' ] ,
} ;
function addHobby ( hobby , hobbies = person . hobbies ) {
hobbies . push ( hobby ) ;
return hobbies ;
}
addHobby ( 'running' , [ ] ) ;
addHobby ( 'dancing' ) ;
addHobby ( 'baking' , person . hobbies ) ;
console . log ( person . hobbies ) ;
["coding"]
["coding", "dancing"]
["coding", "dancing", "baking"]
["coding", "running", "dancing", "baking"]
The addHobby
function receives two arguments, hobby
and hobbies
with the default value of the hobbies
array on the person
object.
First, we invoke the addHobby
function, and pass "running"
as the value for hobby
and an empty array as the value for hobbies
. Since we pass an empty array as the value for hobbies
, "running"
gets added to this empty array.
Then, we invoke the addHobby
function, and pass "dancing"
as the value for hobby
. We didn't pass a value for hobbies
, so it gets the default value, the hobbies
property on the person
object. We push the hobby dancing
to the person.hobbies
array.
Last, we invoke the addHobby
function, and pass "baking"
as the value for hobby
, and the person.hobbies
array as the value for hobbies
. We push the hobby baking
to the person.hobbies
array.
After pushing dancing
and baking
, the value of person.hobbies
is ["coding", "dancing", "baking"]
class Bird {
constructor ( ) {
console . log ( "I'm a bird. ?" ) ;
}
}
class Flamingo extends Bird {
constructor ( ) {
console . log ( "I'm pink. ?" ) ;
super ( ) ;
}
}
const pet = new Flamingo ( ) ;
I'm pink. ?
I'm pink. ?
I'm a bird. ?
I'm a bird. ?
I'm pink. ?
We create the variable pet
which is an instance of the Flamingo
class. When we instantiate this instance, the constructor
on Flamingo
gets called. First, "I'm pink. ?"
gets logged, after which we call super()
. super()
calls the constructor of the parent class, Bird
. The constructor in Bird
gets called, and logs "I'm a bird. ?"
。
const emojis = [ '?' , '??' , '?' , '' ] ;
/* 1 */ emojis . push ( '?' ) ;
/* 2 */ emojis . splice ( 0 , 2 ) ;
/* 3 */ emojis = [ ... emojis , '?' ] ;
/* 4 */ emojis . length = 0 ;
The const
keyword simply means we cannot redeclare the value of that variable, it's read-only . However, the value itself isn't immutable. The properties on the emojis
array can be modified, for example by pushing new values, splicing them, or setting the length of the array to 0.
person
object to get ["Lydia Hallie", 21]
as the output of [...person]
? const person = {
name : "Lydia Hallie" ,
age : 21
}
[ ... person ] // ["Lydia Hallie", 21]
*[Symbol.iterator]() { for (let x in this) yield* this[x] }
*[Symbol.iterator]() { yield* Object.values(this) }
*[Symbol.iterator]() { for (let x in this) yield this }
Objects aren't iterable by default. An iterable is an iterable if the iterator protocol is present. We can add this manually by adding the iterator symbol [Symbol.iterator]
, which has to return a generator object, for example by making it a generator function *[Symbol.iterator]() {}
. This generator function has to yield the Object.values
of the person
object if we want it to return the array ["Lydia Hallie", 21]
: yield* Object.values(this)
.
let count = 0 ;
const nums = [ 0 , 1 , 2 , 3 ] ;
nums . forEach ( num => {
if ( num ) count += 1
} )
console . log ( count )
The if
condition within the forEach
loop checks whether the value of num
is truthy or falsy. Since the first number in the nums
array is 0
, a falsy value, the if
statement's code block won't be executed. count
only gets incremented for the other 3 numbers in the nums
array, 1
, 2
and 3
. Since count
gets incremented by 1
3 times, the value of count
is 3
.
function getFruit ( fruits ) {
console . log ( fruits ?. [ 1 ] ?. [ 1 ] )
}
getFruit ( [ [ '?' , '?' ] , [ '?' ] ] )
getFruit ( )
getFruit ( [ [ '?' ] , [ '?' , '?' ] ] )
null
, undefined
, ?[]
, null
, ?[]
, []
, ?undefined
, undefined
, ? The ?
allows us to optionally access deeper nested properties within objects. We're trying to log the item on index 1
within the subarray that's on index 1
of the fruits
array. If the subarray on index 1
in the fruits
array doesn't exist, it'll simply return undefined
. If the subarray on index 1
in the fruits
array exists, but this subarray doesn't have an item on its 1
index, it'll also return undefined
.
First, we're trying to log the second item in the ['?']
subarray of [['?', '?'], ['?']]
. This subarray only contains one item, which means there is no item on index 1
, and returns undefined
.
Then, we're invoking the getFruits
function without passing a value as an argument, which means that fruits
has a value of undefined
by default. Since we're conditionally chaining the item on index 1
of fruits
, it returns undefined
since this item on index 1
does not exist.
Lastly, we're trying to log the second item in the ['?', '?']
subarray of ['?'], ['?', '?']
. The item on index 1
within this subarray is ?
, which gets logged.
class Calc {
constructor ( ) {
this . count = 0
}
increase ( ) {
this . count ++
}
}
const calc = new Calc ( )
new Calc ( ) . increase ( )
console . log ( calc . count )
0
1
undefined
ReferenceError
We set the variable calc
equal to a new instance of the Calc
class. Then, we instantiate a new instance of Calc
, and invoke the increase
method on this instance. Since the count property is within the constructor of the Calc
class, the count property is not shared on the prototype of Calc
. This means that the value of count has not been updated for the instance calc points to, count is still 0
.
const user = {
email : "[email protected]" ,
password : "12345"
}
const updateUser = ( { email , password } ) => {
if ( email ) {
Object . assign ( user , { email } )
}
if ( password ) {
user . password = password
}
return user
}
const updatedUser = updateUser ( { email : "[email protected]" } )
console . log ( updatedUser === user )
false
true
TypeError
ReferenceError
The updateUser
function updates the values of the email
and password
properties on user, if their values are passed to the function, after which the function returns the user
object. The returned value of the updateUser
function is the user
object, which means that the value of updatedUser is a reference to the same user
object that user
points to. updatedUser === user
equals true
.
const fruit = [ '?' , '?' , '?' ]
fruit . slice ( 0 , 1 )
fruit . splice ( 0 , 1 )
fruit . unshift ( '?' )
console . log ( fruit )
['?', '?', '?']
['?', '?']
['?', '?', '?']
['?', '?', '?', '?']
First, we invoke the slice
method on the fruit array. The slice method does not modify the original array, but returns the value that it sliced off the array: the banana emoji. Then, we invoke the splice
method on the fruit array. The splice method does modify the original array, which means that the fruit array now consists of ['?', '?']
. At last, we invoke the unshift
method on the fruit
array, which modifies the original array by adding the provided value, '?' in this case, as the first element in the array. The fruit array now consists of ['?', '?', '?']
.
const animals = { } ;
let dog = { emoji : '?' }
let cat = { emoji : '?' }
animals [ dog ] = { ... dog , name : "Mara" }
animals [ cat ] = { ... cat , name : "Sara" }
console . log ( animals [ dog ] )
{ emoji: "?", name: "Mara" }
{ emoji: "?", name: "Sara" }
undefined
ReferenceError
Object keys are converted to strings.
Since the value of dog
is an object, animals[dog]
actually means that we're creating a new property called "[object Object]"
equal to the new object. animals["[object Object]"]
is now equal to { emoji: "?", name: "Mara"}
.
cat
is also an object, which means that animals[cat]
actually means that we're overwriting the value of animals["[object Object]"]
with the new cat properties.
Logging animals[dog]
, or actually animals["[object Object]"]
since converting the dog
object to a string results "[object Object]"
, returns the { emoji: "?", name: "Sara" }
.
const user = {
email : "[email protected]" ,
updateEmail : email => {
this . email = email
}
}
user . updateEmail ( "[email protected]" )
console . log ( user . email )
[email protected]
[email protected]
undefined
ReferenceError
The updateEmail
function is an arrow function, and is not bound to the user
object. This means that the this
keyword is not referring to the user
object, but refers to the global scope in this case. The value of email
within the user
object does not get updated. When logging the value of user.email
, the original value of [email protected]
gets returned.
const promise1 = Promise . resolve ( 'First' )
const promise2 = Promise . resolve ( 'Second' )
const promise3 = Promise . reject ( 'Third' )
const promise4 = Promise . resolve ( 'Fourth' )
const runPromises = async ( ) => {
const res1 = await Promise . all ( [ promise1 , promise2 ] )
const res2 = await Promise . all ( [ promise3 , promise4 ] )
return [ res1 , res2 ]
}
runPromises ( )
. then ( res => console . log ( res ) )
. catch ( err => console . log ( err ) )
[['First', 'Second'], ['Fourth']]
[['First', 'Second'], ['Third', 'Fourth']]
[['First', 'Second']]
'Third'
The Promise.all
method runs the passed promises in parallel. If one promise fails, the Promise.all
method rejects with the value of the rejected promise. In this case, promise3
is rejected with the value "Third"
. We're catching the rejected value in the chained catch
method on the runPromises
invocation to catch any errors within the runPromises
function. Only "Third"
gets logged, since promise3
is rejected with this value.
method
be to log { name: "Lydia", age: 22 }
? const keys = [ "name" , "age" ]
const values = [ "Lydia" , 22 ]
const method = /* ?? */
Object [ method ] ( keys . map ( ( _ , i ) => {
return [ keys [ i ] , values [ i ] ]
} ) ) // { name: "Lydia", age: 22 }
entries
values
fromEntries
forEach
The fromEntries
method turns a 2d array into an object. The first element in each subarray will be the key, and the second element in each subarray will be the value. In this case, we're mapping over the keys
array, which returns an array that the first element is the item on the key array on the current index, and the second element is the item of the values array on the current index.
This creates an array of subarrays containing the correct keys and values, which results in { name: "Lydia", age: 22 }
const createMember = ( { email , address = { } } ) => {
const validEmail = / .+@.+..+ / . test ( email )
if ( ! validEmail ) throw new Error ( "Valid email pls" )
return {
email ,
address : address ? address : null
}
}
const member = createMember ( { email : "[email protected]" } )
console . log ( member )
{ email: "[email protected]", address: null }
{ email: "[email protected]" }
{ email: "[email protected]", address: {} }
{ email: "[email protected]", address: undefined }
The default value of address
is an empty object {}
. When we set the variable member
equal to the object returned by the createMember
function, we didn't pass a value for the address, which means that the value of the address is the default empty object {}
. An empty object is a truthy value, which means that the condition of the address ? address : null
conditional returns true
. The value of the address is the empty object {}
.
let randomValue = { name : "Lydia" }
randomValue = 23
if ( ! typeof randomValue === "string" ) {
console . log ( "It's not a string!" )
} else {
console . log ( "Yay it's a string!" )
}
It's not a string!
Yay it's a string!
TypeError
undefined
The condition within the if
statement checks whether the value of !typeof randomValue
is equal to "string"
. The !
operator converts the value to a boolean value. If the value is truthy, the returned value will be false
, if the value is falsy, the returned value will be true
. In this case, the returned value of typeof randomValue
is the truthy value "number"
, meaning that the value of !typeof randomValue
is the boolean value false
.
!typeof randomValue === "string"
always returns false, since we're actually checking false === "string"
. Since the condition returned false
, the code block of the else
statement gets run, and Yay it's a string!
gets logged.