vá abraçando cara
v0.1.0
APIs simples para download ( hub
), tokenização ( tokenizers
) e ( trabalho futuro ) conversão de modelo ( models
) do HuggingFace? modelos usando GoMLX.
EXPERIMENTAL e EM DESENVOLVIMENTO : Embora o pacote hub
tenha permanecido estável, os tokenizers
e os models
futuros ainda estão em intenso desenvolvimento.
import ("github.com/gomlx/go-huggingface/hub""github.com/gomlx/go-huggingface/tokenizers")var ( // IDs de modelo para testes.hfModelIDs = []string{ "google/gemma-2 -2b-it", "transformadores de frases/all-MiniLM-L6-v2", "protectai/deberta-v3-base-zeroshot-v1-onnx", "KnightsAnalytics/distilbert-base-uncased-finetuned-sst-2-english", "KnightsAnalytics/distilbert-NER", "SamLowe/roberta-base-go_emotions-onnx", } hfAuthToken = os.Getenv("HF_TOKEN") // Crie seu token de autenticação HuggingFace em huggingface.co, para permitir o download de modelos.)
para _, modelID:= intervalo hfModelIDs { fmt.Printf("n%s:n", modelID) repo:= hub.New(modelID).WithAuth(hfAuthToken) para fileName, err:= intervalo repo.IterFileNames() { if err != nil { panic(err) } fmt.Printf("t%sn", fileName) } }
para _, modelID: = intervalo hfModelIDs { fmt.Printf ("n% s: n", modelID) repo: = hub.New (modelID). WithAuth (hfAuthToken) configuração, err: = tokenizers.GetConfig (repo) se errar != nulo { pânico (err) } fmt.Printf("ttokenizer_class=%sn", config.TokenizerClass) }
google/gemma-2-2b-it
A mensagem de saída "Downloaded" ocorre apenas quando o arquivo tokenizer ainda não está armazenado em cache, portanto, apenas na primeira vez:
repo := hub.New("google/gemma-2-2b-it").WithAuth(hfAuthToken)tokenizer, err := tokenizers.New(repo)if err != nil { panic(err) }sentence := " O livro está na mesa."tokens := tokenizer.Encode(sentence)fmt.Printf("Sentence:t%sn", sentença)fmt.Printf("Tokens: t%vn", tokens)
Downloaded 1/1 files, 4.2 MB downloaded Sentence: The book is on the table. Tokens: [651 2870 603 611 573 3037 235265]
sentence-transformers/all-MiniLM-L6-v2
Apenas as três primeiras linhas são realmente uma demonstração go-huggingface
. As linhas restantes usam github.com/gomlx/onnx-gomlx
para analisar e converter o modelo ONNX em GoMLX e, em seguida, github.com/gomlx/gomlx
para executar o modelo convertido em algumas frases.
// Obtenha ONNX model.repo := hub.New("sentence-transformers/all-MiniLM-L6-v2").WithAuth(hfAuthToken)onnxFilePath, err := repo.DownloadFile("onnx/model.onnx")if err != nil { panic(err) }onnxModel, err := onnx.ReadFile(onnxFilePath)if err != nil { panic(err) }// Converte variáveis ONNX para o contexto GoMLX (que armazena variáveis):ctx := context.New()err = onnxModel.VariablesToContext(ctx)if err != nil { panic(err) }// Teste input.sentences := []string{ "Esta é uma frase de exemplo", "Cada frase é convertida"}inputIDs := [][]int64{ {101, 2023, 2003, 2019, 2742, 6251, 102}, { 101, 2169, 6251, 2003, 4991, 102, 0}}tokenTypeIDs:= [][]int64{ {0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0}}máscara de atenção:= [][]int64{ {1, 1, 1, 1, 1, 1, 1}, {1, 1, 1, 1, 1, 1, 0}}// Execute o gráfico GoMLX com model.embeddings := context.ExecOnce( backends.New(), ctx, func (ctx *context.Context, inputs [] *graph.Node) *graph.Node { modelOutputs:= onnxModel.CallGraph(ctx, inputs[0].Graph(), map[string]*graph.Node{ "input_ids": inputs[0], "attention_mask": inputs[1], "token_type_ids": inputs[2]}) return modelOutputs[0] }, inputIDs, atençãoMask, tokenTypeIDs)fmt.Printf("Frases: t%qn", sentenças)fmt.Printf("Embeddings:t%sn", embeddings)
Sentences: ["This is an example sentence" "Each sentence is converted"] Embeddings: [2][7][384]float32{ {{0.0366, -0.0162, 0.1682, ..., 0.0554, -0.1644, -0.2967}, {0.7239, 0.6399, 0.1888, ..., 0.5946, 0.6206, 0.4897}, {0.0064, 0.0203, 0.0448, ..., 0.3464, 1.3170, -0.1670}, ..., {0.1479, -0.0643, 0.1457, ..., 0.8837, -0.3316, 0.2975}, {0.5212, 0.6563, 0.5607, ..., -0.0399, 0.0412, -1.4036}, {1.0824, 0.7140, 0.3986, ..., -0.2301, 0.3243, -1.0313}}, {{0.2802, 0.1165, -0.0418, ..., 0.2711, -0.1685, -0.2961}, {0.8729, 0.4545, -0.1091, ..., 0.1365, 0.4580, -0.2042}, {0.4752, 0.5731, 0.6304, ..., 0.6526, 0.5612, -1.3268}, ..., {0.6113, 0.7920, -0.4685, ..., 0.0854, 1.0592, -0.2983}, {0.4115, 1.0946, 0.2385, ..., 0.8984, 0.3684, -0.7333}, {0.1374, 0.5555, 0.2678, ..., 0.5426, 0.4665, -0.5284}}}