Miasm é uma estrutura de engenharia reversa gratuita e de código aberto (GPLv2). Miasm tem como objetivo analisar/modificar/gerar programas binários. Aqui está uma lista não exaustiva de recursos:
Veja o blog oficial para mais exemplos e demonstrações.
Importe a arquitetura Miasm x86:
>>> from miasm.arch.x86.arch import mn_x86
>>> from miasm.core.locationdb import LocationDB
Obtenha um banco de dados de localização:
>>> loc_db = LocationDB()
Monte uma linha:
>>> l = mn_x86.fromstring( ' XOR ECX, ECX ' , loc_db, 32 )
>>> print (l)
XOR ECX, ECX
>>> mn_x86.asm(l)
['1xc9', '3xc9', 'g1xc9', 'g3xc9']
Modifique um operando:
>>> l.args[ 0 ] = mn_x86.regs. EAX
>>> print (l)
XOR EAX, ECX
>>> a = mn_x86.asm(l)
>>> print (a)
['1xc8', '3xc1', 'g1xc8', 'g3xc1']
Desmonte o resultado:
>>> print (mn_x86.dis(a[ 0 ], 32 ))
XOR EAX, ECX
Usando abstração Machine
:
>>> from miasm.analysis.machine import Machine
>>> mn = Machine( ' x86_32 ' ).mn
>>> print (mn.dis( ' x33x30 ' , 32 ))
XOR ESI, DWORD PTR [EAX]
Para MIPS:
>>> mn = Machine( ' mips32b ' ).mn
>>> print (mn.dis( b ' x97xa3x00 ' , " b " ))
LHU V1, 0x20(SP)
Crie uma instrução:
>>> machine = Machine( ' arml ' )
>>> instr = machine.mn.dis( ' x00 x88xe0 ' , ' l ' )
>>> print (instr)
ADD R2, R8, R0
Crie um objeto de representação intermediário:
>>> lifter = machine.lifter_model_call(loc_db)
Crie um ircfg vazio:
>>> ircfg = lifter.new_ircfg()
Adicione instruções ao pool:
>>> lifter.add_instr_to_ircfg(instr, ircfg)
Imprimir pool atual:
>>> for lbl, irblock in ircfg.blocks.items():
... print (irblock)
loc_0:
R2 = R8 + R0
IRDst = loc_4
Trabalhar com IR, por exemplo, obtendo efeitos colaterais:
>>> for lbl, irblock in ircfg.blocks.items():
... for assignblk in irblock:
... rw = assignblk.get_rw()
... for dst, reads in rw.items():
... print ( ' read: ' , [ str (x) for x in reads])
... print ( ' written: ' , dst)
... print ()
...
read: ['R8', 'R0']
written: R2
read: []
written: IRDst
Mais informações sobre o Miasm IR estão no Jupyter Notebook correspondente.
Dando um shellcode:
00000000 8d4904 lea ecx, [ecx+0x4]
00000003 8d5b01 lea ebx, [ebx+0x1]
00000006 80f901 cmp cl, 0x1
00000009 7405 jz 0x10
0000000b 8d5bff lea ebx, [ebx-1]
0000000e eb03 jmp 0x13
00000010 8d5b01 lea ebx, [ebx+0x1]
00000013 89d8 mov eax, ebx
00000015 c3 ret
>>> s = b ' x8d I x04x8d [ x01x80xf9x01 t x05x8d [ xffxebx03x8d [ x01x89xd8xc3 '
Importe o shellcode graças à abstração Container
:
>>> from miasm.analysis.binary import Container
>>> c = Container.from_string(s, loc_db)
>>> c
Desmontando o shellcode no endereço 0
:
>>> from miasm.analysis.machine import Machine
>>> machine = Machine( ' x86_32 ' )
>>> mdis = machine.dis_engine(c.bin_stream, loc_db = loc_db)
>>> asmcfg = mdis.dis_multiblock( 0 )
>>> for block in asmcfg.blocks:
... print (block)
...
loc_0
LEA ECX, DWORD PTR [ECX + 0x4]
LEA EBX, DWORD PTR [EBX + 0x1]
CMP CL, 0x1
JZ loc_10
-> c_next:loc_b c_to:loc_10
loc_10
LEA EBX, DWORD PTR [EBX + 0x1]
-> c_next:loc_13
loc_b
LEA EBX, DWORD PTR [EBX + 0xFFFFFFFF]
JMP loc_13
-> c_to:loc_13
loc_13
MOV EAX, EBX
RET
Inicializando o mecanismo JIT com uma pilha:
>>> jitter = machine.jitter(loc_db, jit_type = ' python ' )
>>> jitter.init_stack()
Adicione o shellcode em um local de memória arbitrário:
>>> run_addr = 0x 40000000
>>> from miasm.jitter.csts import PAGE_READ , PAGE_WRITE
>>> jitter.vm.add_memory_page(run_addr, PAGE_READ | PAGE_WRITE , s)
Crie uma sentinela para capturar o retorno do shellcode:
def code_sentinelle ( jitter ):
jitter . running = False
jitter . pc = 0
return True
> >> jitter . add_breakpoint ( 0x1337beef , code_sentinelle )
> >> jitter . push_uint32_t ( 0x1337beef )
Registros ativos:
>>> jitter.set_trace_log()
Execute em endereço arbitrário:
>>> jitter.init_run(run_addr)
>>> jitter.continue_run()
RAX 0000000000000000 RBX 0000000000000000 RCX 0000000000000000 RDX 0000000000000000
RSI 0000000000000000 RDI 0000000000000000 RSP 000000000123FFF8 RBP 0000000000000000
zf 0000000000000000 nf 0000000000000000 of 0000000000000000 cf 0000000000000000
RIP 0000000040000000
40000000 LEA ECX, DWORD PTR [ECX+0x4]
RAX 0000000000000000 RBX 0000000000000000 RCX 0000000000000004 RDX 0000000000000000
RSI 0000000000000000 RDI 0000000000000000 RSP 000000000123FFF8 RBP 0000000000000000
zf 0000000000000000 nf 0000000000000000 of 0000000000000000 cf 0000000000000000
....
4000000e JMP loc_0000000040000013:0x40000013
RAX 0000000000000000 RBX 0000000000000000 RCX 0000000000000004 RDX 0000000000000000
RSI 0000000000000000 RDI 0000000000000000 RSP 000000000123FFF8 RBP 0000000000000000
zf 0000000000000000 nf 0000000000000000 of 0000000000000000 cf 0000000000000000
RIP 0000000040000013
40000013 MOV EAX, EBX
RAX 0000000000000000 RBX 0000000000000000 RCX 0000000000000004 RDX 0000000000000000
RSI 0000000000000000 RDI 0000000000000000 RSP 000000000123FFF8 RBP 0000000000000000
zf 0000000000000000 nf 0000000000000000 of 0000000000000000 cf 0000000000000000
RIP 0000000040000013
40000015 RET
>>>
Interagindo com o jitter:
>>> jitter.vm
ad 1230000 size 10000 RW_ hpad 0x2854b40
ad 40000000 size 16 RW_ hpad 0x25e0ed0
>>> hex (jitter.cpu. EAX )
'0x0L'
>>> jitter.cpu. ESI = 12
Inicializando o pool de IR:
>>> lifter = machine.lifter_model_call(loc_db)
>>> ircfg = lifter.new_ircfg_from_asmcfg(asmcfg)
Inicializando o mecanismo com valores simbólicos padrão:
>>> from miasm.ir.symbexec import SymbolicExecutionEngine
>>> sb = SymbolicExecutionEngine(lifter)
Iniciando a execução:
>>> symbolic_pc = sb.run_at(ircfg, 0 )
>>> print (symbolic_pc)
((ECX + 0x4)[0:8] + 0xFF)?(0xB,0x10)
O mesmo, com registros de etapas (somente as alterações são exibidas):
>>> sb = SymbolicExecutionEngine(lifter, machine.mn.regs.regs_init)
>>> symbolic_pc = sb.run_at(ircfg, 0 , step = True )
Instr LEA ECX, DWORD PTR [ECX + 0x4]
Assignblk:
ECX = ECX + 0x4
________________________________________________________________________________
ECX = ECX + 0x4
________________________________________________________________________________
Instr LEA EBX, DWORD PTR [EBX + 0x1]
Assignblk:
EBX = EBX + 0x1
________________________________________________________________________________
EBX = EBX + 0x1
ECX = ECX + 0x4
________________________________________________________________________________
Instr CMP CL, 0x1
Assignblk:
zf = (ECX[0:8] + -0x1)?(0x0,0x1)
nf = (ECX[0:8] + -0x1)[7:8]
pf = parity((ECX[0:8] + -0x1) & 0xFF)
of = ((ECX[0:8] ^ (ECX[0:8] + -0x1)) & (ECX[0:8] ^ 0x1))[7:8]
cf = (((ECX[0:8] ^ 0x1) ^ (ECX[0:8] + -0x1)) ^ ((ECX[0:8] ^ (ECX[0:8] + -0x1)) & (ECX[0:8] ^ 0x1)))[7:8]
af = ((ECX[0:8] ^ 0x1) ^ (ECX[0:8] + -0x1))[4:5]
________________________________________________________________________________
af = (((ECX + 0x4)[0:8] + 0xFF) ^ (ECX + 0x4)[0:8] ^ 0x1)[4:5]
pf = parity((ECX + 0x4)[0:8] + 0xFF)
zf = ((ECX + 0x4)[0:8] + 0xFF)?(0x0,0x1)
ECX = ECX + 0x4
of = ((((ECX + 0x4)[0:8] + 0xFF) ^ (ECX + 0x4)[0:8]) & ((ECX + 0x4)[0:8] ^ 0x1))[7:8]
nf = ((ECX + 0x4)[0:8] + 0xFF)[7:8]
cf = (((((ECX + 0x4)[0:8] + 0xFF) ^ (ECX + 0x4)[0:8]) & ((ECX + 0x4)[0:8] ^ 0x1)) ^ ((ECX + 0x4)[0:8] + 0xFF) ^ (ECX + 0x4)[0:8] ^ 0x1)[7:8]
EBX = EBX + 0x1
________________________________________________________________________________
Instr JZ loc_key_1
Assignblk:
IRDst = zf?(loc_key_1,loc_key_2)
EIP = zf?(loc_key_1,loc_key_2)
________________________________________________________________________________
af = (((ECX + 0x4)[0:8] + 0xFF) ^ (ECX + 0x4)[0:8] ^ 0x1)[4:5]
EIP = ((ECX + 0x4)[0:8] + 0xFF)?(0xB,0x10)
pf = parity((ECX + 0x4)[0:8] + 0xFF)
IRDst = ((ECX + 0x4)[0:8] + 0xFF)?(0xB,0x10)
zf = ((ECX + 0x4)[0:8] + 0xFF)?(0x0,0x1)
ECX = ECX + 0x4
of = ((((ECX + 0x4)[0:8] + 0xFF) ^ (ECX + 0x4)[0:8]) & ((ECX + 0x4)[0:8] ^ 0x1))[7:8]
nf = ((ECX + 0x4)[0:8] + 0xFF)[7:8]
cf = (((((ECX + 0x4)[0:8] + 0xFF) ^ (ECX + 0x4)[0:8]) & ((ECX + 0x4)[0:8] ^ 0x1)) ^ ((ECX + 0x4)[0:8] + 0xFF) ^ (ECX + 0x4)[0:8] ^ 0x1)[7:8]
EBX = EBX + 0x1
________________________________________________________________________________
>>>
Tente novamente a execução com um ECX concreto. Aqui, a execução simbólica/concólica chega ao final do shellcode:
>>> from miasm.expression.expression import ExprInt
>>> sb.symbols[machine.mn.regs. ECX ] = ExprInt( - 3 , 32 )
>>> symbolic_pc = sb.run_at(ircfg, 0 , step = True )
Instr LEA ECX, DWORD PTR [ECX + 0x4]
Assignblk:
ECX = ECX + 0x4
________________________________________________________________________________
af = (((ECX + 0x4)[0:8] + 0xFF) ^ (ECX + 0x4)[0:8] ^ 0x1)[4:5]
EIP = ((ECX + 0x4)[0:8] + 0xFF)?(0xB,0x10)
pf = parity((ECX + 0x4)[0:8] + 0xFF)
IRDst = ((ECX + 0x4)[0:8] + 0xFF)?(0xB,0x10)
zf = ((ECX + 0x4)[0:8] + 0xFF)?(0x0,0x1)
ECX = 0x1
of = ((((ECX + 0x4)[0:8] + 0xFF) ^ (ECX + 0x4)[0:8]) & ((ECX + 0x4)[0:8] ^ 0x1))[7:8]
nf = ((ECX + 0x4)[0:8] + 0xFF)[7:8]
cf = (((((ECX + 0x4)[0:8] + 0xFF) ^ (ECX + 0x4)[0:8]) & ((ECX + 0x4)[0:8] ^ 0x1)) ^ ((ECX + 0x4)[0:8] + 0xFF) ^ (ECX + 0x4)[0:8] ^ 0x1)[7:8]
EBX = EBX + 0x1
________________________________________________________________________________
Instr LEA EBX, DWORD PTR [EBX + 0x1]
Assignblk:
EBX = EBX + 0x1
________________________________________________________________________________
af = (((ECX + 0x4)[0:8] + 0xFF) ^ (ECX + 0x4)[0:8] ^ 0x1)[4:5]
EIP = ((ECX + 0x4)[0:8] + 0xFF)?(0xB,0x10)
pf = parity((ECX + 0x4)[0:8] + 0xFF)
IRDst = ((ECX + 0x4)[0:8] + 0xFF)?(0xB,0x10)
zf = ((ECX + 0x4)[0:8] + 0xFF)?(0x0,0x1)
ECX = 0x1
of = ((((ECX + 0x4)[0:8] + 0xFF) ^ (ECX + 0x4)[0:8]) & ((ECX + 0x4)[0:8] ^ 0x1))[7:8]
nf = ((ECX + 0x4)[0:8] + 0xFF)[7:8]
cf = (((((ECX + 0x4)[0:8] + 0xFF) ^ (ECX + 0x4)[0:8]) & ((ECX + 0x4)[0:8] ^ 0x1)) ^ ((ECX + 0x4)[0:8] + 0xFF) ^ (ECX + 0x4)[0:8] ^ 0x1)[7:8]
EBX = EBX + 0x2
________________________________________________________________________________
Instr CMP CL, 0x1
Assignblk:
zf = (ECX[0:8] + -0x1)?(0x0,0x1)
nf = (ECX[0:8] + -0x1)[7:8]
pf = parity((ECX[0:8] + -0x1) & 0xFF)
of = ((ECX[0:8] ^ (ECX[0:8] + -0x1)) & (ECX[0:8] ^ 0x1))[7:8]
cf = (((ECX[0:8] ^ 0x1) ^ (ECX[0:8] + -0x1)) ^ ((ECX[0:8] ^ (ECX[0:8] + -0x1)) & (ECX[0:8] ^ 0x1)))[7:8]
af = ((ECX[0:8] ^ 0x1) ^ (ECX[0:8] + -0x1))[4:5]
________________________________________________________________________________
af = 0x0
EIP = ((ECX + 0x4)[0:8] + 0xFF)?(0xB,0x10)
pf = 0x1
IRDst = ((ECX + 0x4)[0:8] + 0xFF)?(0xB,0x10)
zf = 0x1
ECX = 0x1
of = 0x0
nf = 0x0
cf = 0x0
EBX = EBX + 0x2
________________________________________________________________________________
Instr JZ loc_key_1
Assignblk:
IRDst = zf?(loc_key_1,loc_key_2)
EIP = zf?(loc_key_1,loc_key_2)
________________________________________________________________________________
af = 0x0
EIP = 0x10
pf = 0x1
IRDst = 0x10
zf = 0x1
ECX = 0x1
of = 0x0
nf = 0x0
cf = 0x0
EBX = EBX + 0x2
________________________________________________________________________________
Instr LEA EBX, DWORD PTR [EBX + 0x1]
Assignblk:
EBX = EBX + 0x1
________________________________________________________________________________
af = 0x0
EIP = 0x10
pf = 0x1
IRDst = 0x10
zf = 0x1
ECX = 0x1
of = 0x0
nf = 0x0
cf = 0x0
EBX = EBX + 0x3
________________________________________________________________________________
Instr LEA EBX, DWORD PTR [EBX + 0x1]
Assignblk:
IRDst = loc_key_3
________________________________________________________________________________
af = 0x0
EIP = 0x10
pf = 0x1
IRDst = 0x13
zf = 0x1
ECX = 0x1
of = 0x0
nf = 0x0
cf = 0x0
EBX = EBX + 0x3
________________________________________________________________________________
Instr MOV EAX, EBX
Assignblk:
EAX = EBX
________________________________________________________________________________
af = 0x0
EIP = 0x10
pf = 0x1
IRDst = 0x13
zf = 0x1
ECX = 0x1
of = 0x0
nf = 0x0
cf = 0x0
EBX = EBX + 0x3
EAX = EBX + 0x3
________________________________________________________________________________
Instr RET
Assignblk:
IRDst = @32[ESP[0:32]]
ESP = {ESP[0:32] + 0x4 0 32}
EIP = @32[ESP[0:32]]
________________________________________________________________________________
af = 0x0
EIP = @32[ESP]
pf = 0x1
IRDst = @32[ESP]
zf = 0x1
ECX = 0x1
of = 0x0
nf = 0x0
cf = 0x0
EBX = EBX + 0x3
ESP = ESP + 0x4
EAX = EBX + 0x3
________________________________________________________________________________
>>>
O Miasm incorpora seu próprio desmontador, linguagem intermediária e semântica de instrução. Está escrito em Python.
Para emular código, ele usa LLVM, GCC, Clang ou Python para JIT a representação intermediária. Ele pode emular shellcodes e todos ou partes de binários. Os retornos de chamada do Python podem ser executados para interagir com a execução, por exemplo, para emular efeitos de funções de biblioteca.
Alguns recursos de documentação estão disponíveis na pasta doc.
Uma documentação gerada automaticamente está disponível:
Miasma usa:
Para habilitar o código JIT, um dos seguintes módulos é obrigatório:
'opcional' Miasm também pode usar:
Para usar o jitter, recomenda-se GCC ou LLVM
pip install llvmlite
ou instale a partir de llvmlite$ cd miasm_directory
$ python setup.py build
$ sudo python setup.py install
Se algo der errado durante a compilação de um dos módulos de jitter, o Miasm irá ignorar o erro e desabilitar o módulo correspondente (veja a saída da compilação).
A maioria dos plug-ins IDA do Miasm usa um subconjunto de funcionalidades do Miasm. Uma maneira rápida de fazê-los funcionar é adicionar:
pyparsing.py
para C:...IDApython
ou pip install pyparsing
miasm/miasm
para C:...IDApython
Todos os recursos, exceto os relacionados ao JITter, estarão disponíveis. Para uma instalação mais completa, consulte os parágrafos acima.
Miasm vem com um conjunto de testes de regressão. Para executar todos eles:
cd miasm_directory/test
# Run tests using our own test runner
python test_all.py
# Run tests using standard frameworks (slower, require 'parameterized')
python -m unittest test_all.py # sequential, requires 'unittest'
python -m pytest test_all.py # sequential, requires 'pytest'
python -m pytest -n auto test_all.py # parallel, requires 'pytest' and 'pytest-xdist'
Algumas opções podem ser especificadas:
-m
-c
-t long
(exclui os testes longos)