Incorporação de áudio em Java
O projeto atual tenta desenvolver um codificador de áudio Java puro que possa ser usado em programas Java ou Android puros. Esse codificador de áudio pode ser usado para classificação de gêneros musicais ou pesquisa de músicas, ou recomendação de músicas.
O projeto atual contém atualmente duas redes de aprendizagem profunda adotadas de:
O treinamento e validação desses dois modelos são mostrados abaixo:
O pacote de aprendizado de máquina em Java é tensorflow, ele carrega um modelo de classificador de áudio pré-treinado (formato .pb). O modelo do classificador de áudio foi originalmente implementado e treinado usando Keras em Python. Este modelo de classificador treinado (no formato .h5) foi então convertido em um arquivo de modelo .pb que pode ser carregado diretamente pelo tensorflow em Java.
O modelo de treinamento keras do classificador de áudio pode ser encontrado em README_Training.md
Os exemplos de códigos abaixo mostram como usar o classificador de áudio cifar para prever os gêneros musicais:
import com . github . chen0040 . tensorflow . classifiers . models . cifar10 . Cifar10AudioClassifier ;
import com . github . chen0040 . tensorflow . classifiers . utils . ResourceUtils ;
import org . slf4j . Logger ;
import org . slf4j . LoggerFactory ;
import java . io . File ;
import java . io . IOException ;
import java . io . InputStream ;
import java . util . ArrayList ;
import java . util . Collections ;
import java . util . List ;
public class Demo {
public static void main ( String [] args ) {
InputStream inputStream = ResourceUtils . getInputStream ( "tf_models/cifar10.pb" );
Cifar10AudioClassifier classifier = new Cifar10AudioClassifier ();
classifier . load_model ( inputStream );
List < String > paths = getAudioFiles ();
Collections . shuffle ( paths );
for ( String path : paths ) {
System . out . println ( "Predicting " + path + " ..." );
File f = new File ( path );
String label = classifier . predict_audio ( f );
System . out . println ( "Predicted: " + label );
}
}
}
Os códigos de amostra abaixo mostram como usar o classificador de áudio resnet v2 para prever os gêneros musicais:
import com . github . chen0040 . tensorflow . classifiers . resnet_v2 . ResNetV2AudioClassifier ;
import com . github . chen0040 . tensorflow . classifiers . utils . ResourceUtils ;
import org . slf4j . Logger ;
import org . slf4j . LoggerFactory ;
import java . io . File ;
import java . io . IOException ;
import java . io . InputStream ;
import java . util . ArrayList ;
import java . util . Collections ;
import java . util . List ;
public class Demo {
public static void main ( String [] args ) {
InputStream inputStream = ResourceUtils . getInputStream ( "tf_models/resnet-v2.pb" );
ResNetV2AudioClassifier classifier = new ResNetV2AudioClassifier ();
classifier . load_model ( inputStream );
List < String > paths = getAudioFiles ();
Collections . shuffle ( paths );
for ( String path : paths ) {
System . out . println ( "Predicting " + path + " ..." );
File f = new File ( path );
String label = classifier . predict_audio ( f );
System . out . println ( "Predicted: " + label );
}
}
}
Os códigos de exemplo abaixo mostram como usar o classificador de áudio cifar para codificar um arquivo de áudio em um array flutuante:
import com . github . chen0040 . tensorflow . classifiers . models . cifar10 . Cifar10AudioClassifier ;
import com . github . chen0040 . tensorflow . classifiers . utils . ResourceUtils ;
import org . slf4j . Logger ;
import org . slf4j . LoggerFactory ;
import java . io . File ;
import java . io . IOException ;
import java . io . InputStream ;
import java . util . ArrayList ;
import java . util . Collections ;
import java . util . List ;
public class Demo {
public static void main ( String [] args ){
InputStream inputStream = ResourceUtils . getInputStream ( "tf_models/cifar10.pb" );
Cifar10AudioClassifier classifier = new Cifar10AudioClassifier ();
classifier . load_model ( inputStream );
List < String > paths = getAudioFiles ();
Collections . shuffle ( paths );
for ( String path : paths ) {
System . out . println ( "Encoding " + path + " ..." );
File f = new File ( path );
float [] encoded_audio = classifier . encode_audio ( f );
System . out . println ( "Encoded: " + Arrays . toString ( encoded_audio ));
}
}
}
Os códigos de amostra abaixo mostram como o classificador de áudio resnet v2 codifica um arquivo de áudio em uma matriz flutuante:
import com . github . chen0040 . tensorflow . classifiers . resnet_v2 . ResNetV2AudioClassifier ;
import com . github . chen0040 . tensorflow . classifiers . utils . ResourceUtils ;
import org . slf4j . Logger ;
import org . slf4j . LoggerFactory ;
import java . io . File ;
import java . io . IOException ;
import java . io . InputStream ;
import java . util . ArrayList ;
import java . util . Collections ;
import java . util . List ;
public class Demo {
public static void main ( String [] args ) {
InputStream inputStream = ResourceUtils . getInputStream ( "tf_models/resnet-v2.pb" );
ResNetV2AudioClassifier classifier = new ResNetV2AudioClassifier ();
classifier . load_model ( inputStream );
List < String > paths = getAudioFiles ();
Collections . shuffle ( paths );
for ( String path : paths ) {
System . out . println ( "Encoding " + path + " ..." );
File f = new File ( path );
float [] encoded_audio = classifier . encode_audio ( f );
System . out . println ( "Encoded: " + Arrays . toString ( encoded_audio ));
}
}
}
Os códigos de exemplo abaixo mostram como indexar e pesquisar arquivos de áudio usando a classe AudioSearchEngine:
import com . github . chen0040 . tensorflow . search . models . AudioSearchEngine ;
import com . github . chen0040 . tensorflow . search . models . AudioSearchEntry ;
import java . io . File ;
import java . util . List ;
public class Demo {
public static void main ( String [] args ){
AudioSearchEngine searchEngine = new AudioSearchEngine ();
if (! searchEngine . loadIndexDbIfExists ()) {
searchEngine . indexAll ( FileUtils . getAudioFiles ());
searchEngine . saveIndexDb ();
}
int pageIndex = 0 ;
int pageSize = 20 ;
boolean skipPerfectMatch = true ;
File f = new File ( "mp3_samples/example.mp3" );
System . out . println ( "querying similar music to " + f . getName ());
List < AudioSearchEntry > result = searchEngine . query ( f , pageIndex , pageSize , skipPerfectMatch );
for ( int i = 0 ; i < result . size (); ++ i ){
System . out . println ( "# " + i + ": " + result . get ( i ). getPath () + " (distSq: " + result . get ( i ). getDistance () + ")" );
}
}
}
Os exemplos de códigos abaixo mostram como recomendar músicas com base no histórico musical do usuário usando a classe KnnAudioRecommender:
import com . github . chen0040 . tensorflow . classifiers . utils . FileUtils ;
import com . github . chen0040 . tensorflow . recommenders . models . AudioUserHistory ;
import com . github . chen0040 . tensorflow . recommenders . models . KnnAudioRecommender ;
import com . github . chen0040 . tensorflow . search . models . AudioSearchEntry ;
import java . io . File ;
import java . util . Collections ;
import java . util . List ;
public class Demo {
public static void main ( String [] args ){
AudioUserHistory userHistory = new AudioUserHistory ();
List < String > audioFiles = FileUtils . getAudioFilePaths ();
Collections . shuffle ( audioFiles );
for ( int i = 0 ; i < 40 ; ++ i ){
String filePath = audioFiles . get ( i );
userHistory . logAudio ( filePath );
try {
Thread . sleep ( 100L );
} catch ( InterruptedException e ) {
e . printStackTrace ();
}
}
KnnAudioRecommender recommender = new KnnAudioRecommender ();
if (! recommender . loadIndexDbIfExists ()) {
recommender . indexAll ( new File ( "music_samples" ). listFiles ( a -> a . getAbsolutePath (). toLowerCase (). endsWith ( ".au" )));
recommender . saveIndexDb ();
}
System . out . println ( userHistory . head ( 10 ));
int k = 10 ;
List < AudioSearchEntry > result = recommender . recommends ( userHistory . getHistory (), k );
for ( int i = 0 ; i < result . size (); ++ i ){
AudioSearchEntry entry = result . get ( i );
System . out . println ( "Search Result #" + ( i + 1 ) + ": " + entry . getPath ());
}
}
}