https://github.com/abhaskumarsinha/Corpus2GPT
Logotipo MinimalGPT" width="20%" style="max-width: 100%;">
[ GPT-1 Paper
] [ 1002 short stories from project guttenberg
] [ logo.com
] [ Transformer - Paper
] [ Huggingface Transformers
] [ TensorFlow
] [ BPE Tokenizer: subword-nmt
]
MinimalGPT é uma estrutura de código concisa, adaptável e simplificada que abrange os componentes essenciais necessários para a construção, treinamento, inferência e ajuste fino do modelo GPT. Esta estrutura é implementada exclusivamente usando Keras e TensorFlow, garantindo compatibilidade e coerência dentro do ecossistema mais amplo de aprendizagem profunda.
NOVO: Suporte CPU/GPU/TPU e suporte para carregamento de grandes conjuntos de dados de arquivos!
No repositório, apresentamos dois arquivos integrais que compõem nosso framework proposto. O primeiro arquivo, GPT.py , serve como estrutura fundamental e abrange componentes cruciais, como blocos e camadas. Esses componentes abrangem atenção de múltiplas cabeças, mecanismos de feedforward, atenção de produto escalado, codificação posicional, saída softmax e uma função de inferência para previsão de modelo. O segundo arquivo, MinimalGPT .py , agiliza a utilização de nossa estrutura, oferecendo uma interface de linha de comando concisa. Essa interface permite que os usuários executem operações essenciais sem esforço, incluindo criação de modelo, treinamento, salvamento, carregamento, ajuste fino e inferência, tudo condensado em uma única execução de linha de comando. Além disso, os arquivos podem ser convenientemente importados para o código Python, permitindo que os usuários os incorporem perfeitamente em seus projetos por meio de uma simples chamada de função.
pip install -r requirements.txt
A arquitetura do modelo é governada por vários parâmetros críticos, incluindo GPT_INPUT, D_MODEL, MULTI_HEAD e DECODER_STACKS . É imperativo garantir a consistência desses parâmetros para evitar problemas relacionados ao carregamento do modelo para posterior retreinamento ou processos de inferência. Em situações em que surge incerteza, consultar o arquivo de configuração gerado durante a execução anterior pode fornecer informações valiosas. Além disso, os parâmetros VOCABULARY_START e VOCABULARY_END desempenham um papel crucial na definição dos marcadores de janela do corpus. Esses marcadores auxiliam na geração da camada Vectorizer, que extrai o vocabulário do corpus dentro das contagens de tokens START e END especificadas. É essencial observar que os tokens dentro do corpus são separados por espaços em branco, e a inclusão de VOCABULARY_START e VOCABULARY_END torna-se especialmente relevante quando um arquivo de token não é especificado explicitamente.
Além disso, observe que AMBOS - o arquivo tokenizer e os pesos do modelo são salvos/carregados ao mesmo tempo. Atualmente o código não suporta salvar/carregar esses dois arquivos separadamente.
O modo de inferência (-i) não requer apenas parâmetros de modelo e tokenizador salvo e arquivo de pesos para gerar dados de inferência. Deve ser usado com a opção (-ol).
usage: MinimalGPT .py [-h] [-d DATA_PATH] [-l LEARNING_RATE]
[-ol OUTPUT_LENGTH] [-e EPOCHS] [-b BATCH_SIZE]
[-s GPT_INPUT] [-dm D_MODEL] [-p MULTI_HEAD]
[-ds DECODER_STACKS] [-ts TOKEN_START] [-te TOKEN_END]
[-vs VOCABULARY_START] [-ve VOCABULARY_END] [-sd]
[-lt LOAD_TOKENIZER] [-lw LOAD_WEIGHTS]
[-st SAVE_TOKENIZER] [-sw SAVE_WEIGHTS] [-ot OPTIMIZER]
[-i] [-mv] [-mvo]
optional arguments:
-h, --help show this help message and exit
-d DATA_PATH, --data-path DATA_PATH
File: Corresponding to corpus or training text
[String]
-l LEARNING_RATE, --learning-rate LEARNING_RATE
Float: Learning Rate. The model will train ONLY IF the
rate is > 0, skip otherwise [Float]
-ol OUTPUT_LENGTH, --output-length OUTPUT_LENGTH
Length of the output sequence to be generated
-e EPOCHS, --epochs EPOCHS
Number of training Epochs [Int]
-b BATCH_SIZE, --batch-size BATCH_SIZE
Size of each batch [Int]
-s GPT_INPUT, --gpt-input GPT_INPUT
Number of Tokens of text the model inputs at a time
[Int]
-dm D_MODEL, --d-model D_MODEL
Embedding layer output dimensions [Int]
-p MULTI_HEAD, --multi-head MULTI_HEAD
Number of Multi-head Attention layer in parallel [Int]
-ds DECODER_STACKS, --decoder-stacks DECODER_STACKS
Number of stacked Decoder layer [Int]
-ts TOKEN_START, --token-start TOKEN_START
The token number in the corpus to mark it as the
starting point of the training [Int]
-te TOKEN_END, --token-end TOKEN_END
The token number in the corpus to mark it as the end
point of the training [Int]
-vs VOCABULARY_START, --vocabulary-start VOCABULARY_START
Token number from the corpus to mark the starting
point of vocabulary data [Int]
-ve VOCABULARY_END, --vocabulary-end VOCABULARY_END
Token number from the corpus to mark the end point of
vocabulary data [Int]
-sd, --save Save the Model and Vectorizer data to disk
[True/False]
-lt LOAD_TOKENIZER, --load-tokenizer LOAD_TOKENIZER
File: Vectorization layer [File]
-lw LOAD_WEIGHTS, --load-weights LOAD_WEIGHTS
File: Model Weights [File]
-st SAVE_TOKENIZER, --save-tokenizer SAVE_TOKENIZER
File: Saving Vectorizer File [File]
-sw SAVE_WEIGHTS, --save-weights SAVE_WEIGHTS
File: Saving Model Weights[File]
-ot OPTIMIZER, --optimizer OPTIMIZER
Optimizer consistent to TensorFlow optimizer class
[tf.keras.optimizers]
-i, --inference-only Only Print the output of the model in Inference Mode
[True/False]
-mv, --model-vectorizer
Return Model, Vectorizer Tuple [True/False]
-mvo, --model-vectorizer-output
Return Model, Vectorizer, Output Tuple [True/False]
Supondo que as especificações do modelo desejado envolvam GPT_INPUT = 10, D_MODEL = 128, MULTI_HEAD = 8 e DECODER_STACKS = 1, e o intervalo de token do corpus para intervalos de treinamento de TOKEN_START = 0 a TOKEN_END = 40000, e gere a camada do vetorizador a partir do intervalo do corpus de VOCABULARY_START = 0 a VOCABULARY_END = 200000, o comando a seguir é executado para iniciar o processo de treinamento do modelo. Os pesos resultantes e os dados do tokenizer são salvos na pasta designada. As saídas subsequentes ilustram o resultado da execução deste comando.
PS C:gpt> python MinimalGPT .py -d './dataset/output_dataset.txt' -l 0.001 -ol 200 -e 4 -b 512 -s 10 -dm 128 -p 8 -ds 1 -ts 0 -te 40000 -vs 0 -ve 200000 -sd -st './models/tokenizer.mgt' -sw './models/weights.mgw'
Total tokens: 40000
100%|██████████████████████████████████████████████████████████████████████████████| 200000/200000 [02:02<00:00, 1636.38it/s]
New Vectorizer created successfully...
Vocabulary Size: 14270
100%|██████████████████████████████████████████████████████████████████████████████| 39989/39989 [00:00<00:00, 302926.25it/s]
100%|█████████████████████████████████████████████████████████████████████████████| 39989/39989 [00:00<00:00, 1289942.19it/s]
(None, 10, 128)
Epoch 1/4
79/79 [==============================] - 88s 1s/step - loss: 7.8692
Epoch 2/4
79/79 [==============================] - 92s 1s/step - loss: 3.8066
Epoch 3/4
79/79 [==============================] - 93s 1s/step - loss: 1.1487
Epoch 4/4
79/79 [==============================] - 92s 1s/step - loss: 0.2900
100%|██████████████████████████████████████████████████████████████████████████████████████| 190/190 [00:05<00:00, 34.70it/s]
Vocabulary size saved: 14270
and her eyes in the library. She was the rather large woman, although not fat, and when she wore high heels--which sh
e was not prone to do, because although Cutter would not have cared, she kept trying to project into other people's minds and
trying, as she said, "Not to do anything to them, that I wouldn't want them to do you me."--she rose a good inch above Cutter.
She was pleasant humored, and cooperative, and the one great irritant about her that annoyed Cutter, was the fact that she wa
s not capable of meeting life wholeheartedly and with strength. She steadily worried about other people's feelings and thought
s, so that Cutter wondered if she were capable of the slightest personal conviction. Yet that weakness was an advantage at the
same time, to him, because she worked constantly toward making him happy. The house was run to his minutest liking, and the s
ervants liked her, so that while she did not use a strong enough
Suponha que queiramos ajustar o modelo acima (ou treiná-lo novamente), então o comando para recarregar o tokenizer e os pesos e treiná-lo novamente em um novo texto de um intervalo de janela especificado do corpus é fornecido abaixo:
PS C:gpt> python MinimalGPT .py -d './dataset/output_dataset.txt' -l 0.00005 -ol 200 -e 1 -b 512 -s 10 -dm 128 -p 8 -ds 1 -ts 80000 -te 120000 -sd -st './models/tokenizer2.mgt' -sw './models/weights2.mgw' -lt './models/tokenizer.mgt' -lw './models/weights.mgw'
Total tokens: 40000
100%|██████████████████████████████████████████████████████████████████████████████| 39989/39989 [00:00<00:00, 302923.51it/s]
100%|█████████████████████████████████████████████████████████████████████████████| 39989/39989 [00:00<00:00, 1428099.68it/s]
(None, 10, 128)
79/79 [==============================] - 81s 993ms/step - loss: 7.9725
100%|██████████████████████████████████████████████████████████████████████████████████████| 190/190 [00:06<00:00, 30.29it/s]
Vocabulary size saved: 14270
of her own the black of my own and my wife had could seen the house at the same moment her mind caught the first sugg
estion of the folded paper. “But he must have a name! Where is the paper?” She moved to the desk, and began to turn over the s
cattered documents that littered it. The first that caught her eye was an unfinished letter in her husband’s hand, with his pe
n lying across it, as though dropped there at a sudden summons. “My dear Parvis,”--who was Parvis?--“I have just received your
letter announcing Elwell’s death, and while I suppose there is now no farther risk of trouble, it might be safer--” That was
all. The “risk of trouble” was easily explained by the newspaper clipping which had apprised Mary of the suit brought against
her husband by one of his associates in the Blue Star enterprise. The only new information conveyed in the letter was the fact
of its showing Boyne,
O modo de inferência envolve o carregamento de pesos pré-treinados e vetorizador. Esses componentes são então utilizados para executar o modelo, gerando saídas de comprimento especificado conforme especificado.
PS C:gpt> python MinimalGPT .py -i -ol 500 -e 6 -b 512 -s 10 -dm 128 -p 8 -ds 1 -lt './models/tokenizer2.mgt' -lw './models/weights2.mgw'
(None, 10, 128)
100%|██████████████████████████████████████████████████████████████████████████████████████| 490/490 [00:13<00:00, 35.93it/s]
of her own “on the other from the inel’--a little sensational, of course. But I guess you’d better look it over.” He
held out a newspaper to Mary, who unfolded it slowly, remembering, as she did so, the evening when, in that same room, the per
usal of a clipping from the “Sentinel” had first shaken the depths of her security. As she opened the paper, her eyes, shrinki
ng from the glaring head-lines, “Widow of Boyne’s Victim Forced to Appeal for Aid,” ran down the column of text to two portrai
ts inserted in it. The first was her husband’s, taken from a photograph made the year they had come to England. It was the pic
ture of him that she liked best, the one that stood on the writing-table up-stairs in her bedroom. As the eyes in the photogra
ph met hers, she felt it would be impossible to read what was said of him, and closed her lids with the sharpness of the pain.
“I thought if you felt disposed to put your name down--” she heard Parvis continue. She opened her eyes with an effort, and t
hey fell on the other portrait. It was that of a youngish man, slightly built, in rough clothes, with features somewhat blurre
d by the shadow of a projecting hat-brim. Where had she seen that outline before? She stared at it confusedly, her heart hamme
ring in her throat and ears. Then she gave a cry. “This is the man--the man who came for my husband!” She heard Parvis start t
o his feet, and was dimly aware that she had slipped backward into the corner of the sofa, and that he was bending above her i
n alarm. With an intense effort she straightened herself, and reached out for the paper, which she had dropped. “It’s the man!
I should know him anywhere!” she cried in a voice that sounded in her own ears like a scream. Parvis’s voice seemed to come t
o her from far off, down endless, fog-muffled windings. “Mrs. Boyne, you’re not very well. Shall I call somebody? Shall I get
a glass of water?” “No, no, no!” She threw herself toward him, her hand frantically clenching the newspaper. “I tell you, it’s
the man! I KNOW him! He spoke to me in the garden!” Parvis took the journal from her, directing his glasses to the portrait.
“It can’t be, Mrs. Boyne. It’s Robert Elwell.” “Robert Elwell?” Her white
Incorporar os modelos treinados gerados através da utilização de MinimalGPT .py em seu projeto é um processo simples, facilitado pela importação da função MinimalGPT e pela configuração dela de acordo com as especificações desejadas. Isso pode ser conseguido definindo os parâmetros return_model_and_vectorizer = True ou return_model_and_vectorizer_and_output = True na estrutura inference_only = True (modo de inferência). Além disso, o treinamento, a criação e a exportação do modelo podem ser realizados usando uma abordagem semelhante, paralelamente ao modo de linha de comando. Para uma ilustração abrangente desses procedimentos, o Jupyter Notebook fornecido fornece uma demonstração exemplar.
from MinimalGPT import MinimalGPT model = MinimalGPT (output_length = 200, gpt_input = 10, d_model = 128, h = 8, decoder_stacks = 1, load_tokenizer = './models/tokenizer3.mgt', load_weights = './models/weights3.mgw', inference_only = True, return_model_and_vectorizer_and_output = True) model[0].summary()
Model: "model"
Layer (type) Output Shape Param
================================================================= input_1 (InputLayer) [(None, 10)] 0
embedding (Embedding) (None, 10, 128) 1826816
positional_embedding (Posit (None, 10, 128) 0
ionalEmbedding)
decoder (Decoder) (None, 10, 128) 37160
flatten (Flatten) (None, 1280) 0
dense (Dense) (None, 14273) 18283713
tf.nn.softmax (TFOpLambda) (None, 14273) 0
================================================================= Total params: 20,147,689 Trainable params: 20,147,689 Non-trainable params: 0
O modelo implementado aqui difere um pouco em comparação com a implementação original em papel. A matriz formada após concatenar as cabeças da saída do produto escalar em escala é multiplicada pelo parâmetro da matriz de tamanho dimensão chave x d_model. Para fins práticos, esse pequeno ajuste para reduzir o número de parâmetros levaria a um pequeno aumento no desempenho devido à otimização dos parâmetros treináveis.