triton transformer
0.1.1
Implementação de um Transformer, mas totalmente em Triton. Sou completamente novo no código de rede neural de nível inferior, então este repositório será principalmente uma experiência de aprendizado, com o objetivo final sendo um transformador básico que seja mais rápido e eficiente de treinar.
Layernorm para frente
Layernorm para frente e para trás
Softmax para frente e para trás
$ pip install triton-transformer
import torch
from triton_transformer import Transformer
model = Transformer (
num_tokens = 256 , # vocab size
max_seq_len = 1024 , # maximum sequence length
dim = 512 , # dimension
depth = 6 , # depth
heads = 8 , # number of heads
dim_head = 64 , # dimension per head
causal = True , # autoregressive or not
attn_dropout = 0.1 , # attention dropout
ff_dropout = 0.1 , # feedforward dropout
use_triton = True # use this to turn on / off triton
). cuda ()
x = torch . randint ( 0 , 256 , ( 1 , 1024 )). cuda ()
logits = model ( x ) # (1, 1024, 256)
Para treinar, basta passar os rótulos com os labels
de palavras-chave adiante, e a perda de entropia cruzada será retornada para backprop.
ex. BERTO
import torch
from triton_transformer import Transformer
model = Transformer (
num_tokens = 20000 ,
max_seq_len = 512 ,
dim = 512 ,
depth = 12 ,
heads = 8 ,
dim_head = 64 ,
use_triton = True
). cuda ()
x = torch . randint ( 0 , 20000 , ( 1 , 512 )). cuda ()
labels = torch . randint ( 0 , 20000 , ( 1 , 512 )). cuda ()
mask = torch . ones ( 1 , 512 ). bool (). cuda ()
loss = model ( x , mask = mask , labels = labels )
loss . backward ()
$ python train.py
@article { Tillet2019TritonAI ,
title = { Triton: an intermediate language and compiler for tiled neural network computations } ,
author = { Philippe Tillet and H. Kung and D. Cox } ,
journal = { Proceedings of the 3rd ACM SIGPLAN International Workshop on Machine Learning and Programming Languages } ,
year = { 2019 }
}
@misc { vaswani2017attention ,
title = { Attention Is All You Need } ,
author = { Ashish Vaswani and Noam Shazeer and Niki Parmar and Jakob Uszkoreit and Llion Jones and Aidan N. Gomez and Lukasz Kaiser and Illia Polosukhin } ,
year = { 2017 } ,
eprint = { 1706.03762 } ,
archivePrefix = { arXiv } ,
primaryClass = { cs.CL }
}
@misc { so2021primer ,
title = { Primer: Searching for Efficient Transformers for Language Modeling } ,
author = { David R. So and Wojciech Mańke and Hanxiao Liu and Zihang Dai and Noam Shazeer and Quoc V. Le } ,
year = { 2021 } ,
eprint = { 2109.08668 } ,
archivePrefix = { arXiv } ,
primaryClass = { cs.LG }
}
@article { chowdhery2022PaLM ,
title = { PaLM: Scaling Language Modeling with Pathways } ,
author = { Chowdhery, Aakanksha et al } ,
year = { 2022 }
}