bit diffusion
0.1.4
Implementação de Bit Diffusion, tentativa do grupo de Hinton de difusão discreta de eliminação de ruído, em Pytorch
Parece que erraram o alvo do texto, mas a direção da pesquisa ainda parece promissora. Acho que um repositório limpo trará muitos benefícios à comunidade de pesquisa para aqueles que se ramificam daqui.
$ pip install bit-diffusion
from bit_diffusion import Unet , Trainer , BitDiffusion
model = Unet (
dim = 32 ,
channels = 3 ,
dim_mults = ( 1 , 2 , 4 , 8 ),
). cuda ()
bit_diffusion = BitDiffusion (
model ,
image_size = 128 ,
timesteps = 100 ,
time_difference = 0.1 , # they found in the paper that at lower number of timesteps, a time difference during sampling of greater than 0 helps FID. as timesteps increases, this time difference can be set to 0 as it does not help
use_ddim = True # use ddim
). cuda ()
trainer = Trainer (
bit_diffusion ,
'/path/to/your/data' , # path to your folder of images
results_folder = './results' , # where to save results
num_samples = 16 , # number of samples
train_batch_size = 4 , # training batch size
gradient_accumulate_every = 4 , # gradient accumulation
train_lr = 1e-4 , # learning rate
save_and_sample_every = 1000 , # how often to save and sample
train_num_steps = 700000 , # total training steps
ema_decay = 0.995 , # exponential moving average decay
)
trainer . train ()
Os resultados serão salvos periodicamente na pasta ./results
Se você gostaria de experimentar as classes Unet
e BitDiffusion
fora do Trainer
import torch
from bit_diffusion import Unet , BitDiffusion
model = Unet (
dim = 64 ,
dim_mults = ( 1 , 2 , 4 , 8 )
)
bit_diffusion = BitDiffusion (
model ,
image_size = 128 ,
timesteps = 1000
)
training_images = torch . randn ( 8 , 3 , 128 , 128 ) # images are normalized from 0 to 1
loss = bit_diffusion ( training_images )
loss . backward ()
# after a lot of training
sampled_images = bit_diffusion . sample ( batch_size = 4 )
sampled_images . shape # (4, 3, 128, 128)
@article { Chen2022AnalogBG ,
title = { Analog Bits: Generating Discrete Data using Diffusion Models with Self-Conditioning } ,
author = { Ting Chen and Ruixiang Zhang and Geoffrey E. Hinton } ,
journal = { ArXiv } ,
year = { 2022 } ,
volume = { abs/2208.04202 }
}