Implementação de Transformador Recorrente em Bloco - Pytorch. O destaque do artigo é sua capacidade relatada de lembrar algo de até 60 mil tokens atrás.
Este projeto é SOTA para linha de pesquisa de transformadores recorrentes, afaict.
Também incluirá atenção flash, bem como memórias roteadas de até 250 mil tokens usando ideias deste artigo
$ pip install block-recurrent-transformer-pytorch
import torch
from block_recurrent_transformer_pytorch import BlockRecurrentTransformer
model = BlockRecurrentTransformer (
num_tokens = 20000 , # vocab size
dim = 512 , # model dimensions
depth = 6 , # depth
dim_head = 64 , # attention head dimensions
heads = 8 , # number of attention heads
max_seq_len = 1024 , # the total receptive field of the transformer, in the paper this was 2 * block size
block_width = 512 , # block size - total receptive field is max_seq_len, 2 * block size in paper. the block furthest forwards becomes the new cached xl memories, which is a block size of 1 (please open an issue if i am wrong)
num_state_vectors = 512 , # number of state vectors, i believe this was a single block size in the paper, but can be any amount
recurrent_layers = ( 4 ,), # where to place the recurrent layer(s) for states with fixed simple gating
use_compressed_mem = False , # whether to use compressed memories of a single block width, from https://arxiv.org/abs/1911.05507
compressed_mem_factor = 4 , # compression factor of compressed memories
use_flash_attn = True # use flash attention, if on pytorch 2.0
)
seq = torch . randint ( 0 , 2000 , ( 1 , 1024 ))
out , mems1 , states1 = model ( seq )
out , mems2 , states2 = model ( seq , xl_memories = mems1 , states = states1 )
out , mems3 , states3 = model ( seq , xl_memories = mems2 , states = states2 )
Primeiro pip install -r requirements.txt
e então
$ python train.py
usar viés posicional dinâmico
adicionar recorrência aprimorada
configurar blocos de atenção local, como no artigo
classe de transformador wrapper para treinamento
cuidar da geração com recorrência no RecurrentTrainWrapper
adicionar capacidade de abandono de memórias e estados inteiros durante cada etapa do segmento durante o treinamento
teste o sistema completo no enwik8 localmente e remova estados e memórias e veja os efeitos em primeira mão
certifique-se de que a atenção também permite chaves/valores únicos
execute alguns experimentos de gating fixo em transformadores regulares - não funciona
integrar atenção instantânea
máscara de atenção de cache + embeddings rotativos
adicionar memórias compactadas
revisitar o memformer
tente rotear memórias de longa distância de até 250k usando descida por coordenadas (Wright et al.)
@article { Hutchins2022BlockRecurrentT ,
title = { Block-Recurrent Transformers } ,
author = { DeLesley S. Hutchins and Imanol Schlag and Yuhuai Wu and Ethan Dyer and Behnam Neyshabur } ,
journal = { ArXiv } ,
year = { 2022 } ,
volume = { abs/2203.07852 }
}
@article { Shazeer2019FastTD ,
title = { Fast Transformer Decoding: One Write-Head is All You Need } ,
author = { Noam M. Shazeer } ,
journal = { ArXiv } ,
year = { 2019 } ,
volume = { abs/1911.02150 }
}
@inproceedings { Sun2022ALT ,
title = { A Length-Extrapolatable Transformer } ,
author = { Yutao Sun and Li Dong and Barun Patra and Shuming Ma and Shaohan Huang and Alon Benhaim and Vishrav Chaudhary and Xia Song and Furu Wei } ,
year = { 2022 }
}
@inproceedings { dao2022flashattention ,
title = { Flash{A}ttention: Fast and Memory-Efficient Exact Attention with {IO}-Awareness } ,
author = { Dao, Tri and Fu, Daniel Y. and Ermon, Stefano and Rudra, Atri and R{'e}, Christopher } ,
booktitle = { Advances in Neural Information Processing Systems } ,
year = { 2022 }
}
@inproceedings { Ainslie2023CoLT5FL ,
title = { CoLT5: Faster Long-Range Transformers with Conditional Computation } ,
author = { Joshua Ainslie and Tao Lei and Michiel de Jong and Santiago Ontan'on and Siddhartha Brahma and Yury Zemlyanskiy and David Uthus and Mandy Guo and James Lee-Thorp and Yi Tay and Yun-Hsuan Sung and Sumit Sanghai } ,
year = { 2023 }
}
Memória é atenção através do tempo - Alex Graves