cufflinks
1.0.0
Esta biblioteca vincula o poder da plotagem com a flexibilidade dos pandas para facilitar a plotagem.
Esta biblioteca está disponível em https://github.com/santosjorge/cufflinks
Este tutorial pressupõe que as credenciais do usuário da plotagem já tenham sido configuradas conforme indicado no guia de início.
Suporte para plotly 4.x
Os abotoados não são mais compatíveis com a plotly 3.x
Suporte para plotly 3.0
Novo ajudante iplot
. Para ver uma lista abrangente de parâmetros cf.help ()
# For a list of supported figures
cf . help ()
# Or to see the parameters supported that apply to a given figure try
cf . help ( 'scatter' )
cf . help ( 'candle' ) #etc
Removido dependência de Ta-Lib. Esta biblioteca não é mais necessária. Todos os estudos foram reescritos em Python.
QuantFigure
é uma nova classe que gerará um objeto gráfico com persistência. Os parâmetros podem ser adicionados/modificados em qualquer ponto.Isso pode ser tão fácil quanto:
df = cf . datagen . ohlc ()
qf = cf . QuantFig ( df , title = 'First Quant Figure' , legend = 'top' , name = 'GS' )
qf . add_bollinger_bands ()
qf . iplot ()
qf . add_sma ([ 10 , 20 ], width = 2 , color = [ 'green' , 'lightgreen' ], legendgroup = True )
qf . add_rsi ( periods = 20 , color = 'java' )
qf . add_bollinger_bands ( periods = 20 , boll_std = 2 , colors = [ 'magenta' , 'grey' ], fill = True )
qf . add_volume ()
qf . add_macd ()
qf . iplot ()
rangeslider
para exibir um slider de intervalo de data na parte inferiorcf.datagen.ohlc().iplot(kind='candle',rangeslider=True)
rangeselector
para exibir botões para alterar o intervalo de data exibidocf.datagen.ohlc(500).iplot(kind='candle', rangeselector={ 'steps':['1y','2 months','5 weeks','ytd','2mtd','reset'], 'bgcolor' : ('grey',.3), 'x': 0.3 , 'y' : 0.95})
fontsize
, fontcolor
, textangle
cf.datagen.lines(1,mode='stocks').iplot(kind='line', annotations={'2015-02-02':'Market Crash', '2015-03-01':'Recovery'}, textangle=-70,fontsize=13,fontcolor='grey')
cf.datagen.lines(1,mode='stocks').iplot(kind='line', annotations=[{'text':'exactly here','x':'0.2', 'xref':'paper','arrowhead':2, 'textangle':-10,'ay':150,'arrowcolor':'red'}])
Figure.iplot()
para plotar figurascf.datagen.ohlc().iplot(kind='candle')
iplot
xrange
, yrange
e zrange
podem ser especificados em iplot
e getLayout
cf.datagen.lines(1).iplot(yrange=[5,15])
layout_update
pode ser definido no iplot
e getLayout
para atualizar explicitamente qualquer valor Layout
Veja o notebook IPython
cf.datagen.pie().iplot(kind='pie',labels='labels',values='values')
datagen.ohlc()
ohlc=cf.datagen.ohlc()
ohlc.iplot(kind='candle',up_color='blue',down_color='red')
ohlc=cf.datagen.ohlc()
ohlc.iplot(kind='ohlc',up_color='blue',down_color='red')
df=pd.DataFrame([x**2] for x in range(100))
df.iplot(kind='lines',logy=True)
cf.datagen.lines(1,5).iplot(kind='bar',error_y=[1,2,3.5,2,2])
cf.datagen.lines(1,5).iplot(kind='bar',error_y=20, error_type='percent')
cf.datagen.lines(1).iplot(kind='lines',error_y=20,error_type='continuous_percent')
cf.datagen.lines(1).iplot(kind='lines',error_y=10,error_type='continuous',color='blue')
cf.datagen.lines(1,500).ta_plot(study='sma',periods=[13,21,55])
cf.datagen.lines(1,200).ta_plot(study='boll',periods=14)
cf.datagen.lines(1,200).ta_plot(study='rsi',periods=14)
cf.datagen.lines(1,200).ta_plot(study='macd',fast_period=12,slow_period=26, signal_period=9)
cf.go_offline()
cf.go_online()
cf.iplot(figure,online=True)
(para forçar on -line enquanto estiver no modo offline)fig=cf.datagen.lines(3,columns=['a','b','c']).figure()
fig=fig.set_axis('b',side='right')
cf.iplot(fig)
cufflinks.set_config_file(theme='pearl')
cufflinks.datagen.lines(5).iplot(theme='ggplot')
cufflinks.datagen.lines(2).iplot(kind='barh',barmode='stack',bargap=.1)
cufflinks.datagen.histogram().iplot(kind='histogram',orientation='h',norm='probability')
cufflinks.datagen.lines(4).iplot(kind='area',fill=True,opacity=1)
cufflinks.datagen.histogram(4).iplot(kind='histogram',subplots=True,bins=50)
cufflinks.datagen.lines(4).iplot(subplots=True,shape=(4,1),shared_xaxes=True,vertical_spacing=.02,fill=True)
cufflinks.datagen.lines(4,1000).scatter_matrix()
cufflinks.datagen.lines(3).iplot(hline=[2,3])
cufflinks.datagen.lines(3).iplot(hline=dict(y=2,color='blue',width=3))
cufflinks.datagen.lines(3).iplot(hspan=(-1,2))
cufflinks.datagen.lines(3).iplot(hspan=dict(y0=-1,y1=2,color='orange',fill=True,opacity=.4))
cufflinks.set_config_file(world_readable=True)
cufflinks.datagen.lines(2).iplot(kind='spread')
cufflinks.datagen.heatmap().iplot(kind='heatmap')
cufflinks.datagen.bubble(4).iplot(kind='bubble',x='x',y='y',text='text',size='size',categories='categories')
cufflinks.datagen.bubble3d(4).iplot(kind='bubble3d',x='x',y='y',z='z',text='text',size='size',categories='categories')
cufflinks.datagen.box().iplot(kind='box')
cufflinks.datagen.surface().iplot(kind='surface')
cufflinks.datagen.scatter3d().iplot(kind='scatter3d',x='x',y='y',z='z',text='text',categories='categories')
cufflinks.datagen.histogram(2).iplot(kind='histogram')
cufflinks.datagen
cufflinks.to_df(Figure)
iplot(colorscale='accent')
para traçar um gráfico usando uma escala de cor de destaqueiplot(colors=['pink','red','yellow'])