/** * O algoritmo de string simples encontra a sub -tração através de duas camadas de ciclo. * A idéia do algoritmo é: compara -se da sequência de padrões do caractere POS da sequência principal S. Quando a correspondência não é bem -sucedida, o caractere POS+1 da sequência principal S é comparado com a sequência de padrões. * Se o comprimento da sequência principal S for n e o comprimento da sequência de modo for m, a complexidade do tempo da força bruta é O (m* n). * O pior caso aparece na sub -série da string de modo aparece freqüentemente na string principal S. * Embora sua complexidade do tempo seja O (m * n), o tempo de correspondência é O (M+N) em geral e * é usado em grandes quantidades. * As vantagens deste método são: o algoritmo é simples e claro, o que é conveniente para alcançar a memória. * A desvantagem desse método é: a retrospectiva retrospectiva, a eficiência não é alta e esses traçadores são desnecessários. * Abaixo está o código Java do algoritmo Classe BRURECE {public static void main (String [] args) {string waitformatch = "abbacbabcdabcbec"; ("Índice correspondente é"+índice);} / *** @autor* @param waitformatch string principal* @param strings de modo de padrão* @return string correspondente posição bem -sucedida* / public int get getSubstringEx (string wai tFormatch, string padrão) { Int StringLength = Waitformatch.Length (); A próxima posição para (int j = 0; j <PatternLength; j ++) {if (WaitFormatch.Charat (k)! = Pattern.Charat (J)) {Break;} else {K ++; == PatternLength-) {return i;}}}} // correspondência malsucedida, retornar 0 retornar 0;}}