Miasm — это бесплатная среда обратного инжиниринга с открытым исходным кодом (GPLv2). Миазм направлен на анализ/модификацию/генерацию двоичных программ. Вот неполный список возможностей:
Дополнительную информацию о примерах и демонстрациях можно найти в официальном блоге.
Импортировать архитектуру Miasm x86:
>>> from miasm.arch.x86.arch import mn_x86
>>> from miasm.core.locationdb import LocationDB
Получить базу данных местоположения:
>>> loc_db = LocationDB()
Собираем строку:
>>> l = mn_x86.fromstring( ' XOR ECX, ECX ' , loc_db, 32 )
>>> print (l)
XOR ECX, ECX
>>> mn_x86.asm(l)
['1xc9', '3xc9', 'g1xc9', 'g3xc9']
Измените операнд:
>>> l.args[ 0 ] = mn_x86.regs. EAX
>>> print (l)
XOR EAX, ECX
>>> a = mn_x86.asm(l)
>>> print (a)
['1xc8', '3xc1', 'g1xc8', 'g3xc1']
Разобрать результат:
>>> print (mn_x86.dis(a[ 0 ], 32 ))
XOR EAX, ECX
Использование Machine
абстракции:
>>> from miasm.analysis.machine import Machine
>>> mn = Machine( ' x86_32 ' ).mn
>>> print (mn.dis( ' x33x30 ' , 32 ))
XOR ESI, DWORD PTR [EAX]
Для МИПС:
>>> mn = Machine( ' mips32b ' ).mn
>>> print (mn.dis( b ' x97xa3x00 ' , " b " ))
LHU V1, 0x20(SP)
Создайте инструкцию:
>>> machine = Machine( ' arml ' )
>>> instr = machine.mn.dis( ' x00 x88xe0 ' , ' l ' )
>>> print (instr)
ADD R2, R8, R0
Создайте промежуточный объект представления:
>>> lifter = machine.lifter_model_call(loc_db)
Создайте пустой ircfg:
>>> ircfg = lifter.new_ircfg()
Добавьте инструкцию в пул:
>>> lifter.add_instr_to_ircfg(instr, ircfg)
Распечатать текущий пул:
>>> for lbl, irblock in ircfg.blocks.items():
... print (irblock)
loc_0:
R2 = R8 + R0
IRDst = loc_4
Работая с IR, например, получая побочные эффекты:
>>> for lbl, irblock in ircfg.blocks.items():
... for assignblk in irblock:
... rw = assignblk.get_rw()
... for dst, reads in rw.items():
... print ( ' read: ' , [ str (x) for x in reads])
... print ( ' written: ' , dst)
... print ()
...
read: ['R8', 'R0']
written: R2
read: []
written: IRDst
Дополнительную информацию о Miasm IR можно найти в соответствующем блокноте Jupyter.
Даём шеллкод:
00000000 8d4904 lea ecx, [ecx+0x4]
00000003 8d5b01 lea ebx, [ebx+0x1]
00000006 80f901 cmp cl, 0x1
00000009 7405 jz 0x10
0000000b 8d5bff lea ebx, [ebx-1]
0000000e eb03 jmp 0x13
00000010 8d5b01 lea ebx, [ebx+0x1]
00000013 89d8 mov eax, ebx
00000015 c3 ret
>>> s = b ' x8d I x04x8d [ x01x80xf9x01 t x05x8d [ xffxebx03x8d [ x01x89xd8xc3 '
Импортируйте шеллкод благодаря абстракции Container
:
>>> from miasm.analysis.binary import Container
>>> c = Container.from_string(s, loc_db)
>>> c
Дизассемблирование шеллкода по адресу 0
:
>>> from miasm.analysis.machine import Machine
>>> machine = Machine( ' x86_32 ' )
>>> mdis = machine.dis_engine(c.bin_stream, loc_db = loc_db)
>>> asmcfg = mdis.dis_multiblock( 0 )
>>> for block in asmcfg.blocks:
... print (block)
...
loc_0
LEA ECX, DWORD PTR [ECX + 0x4]
LEA EBX, DWORD PTR [EBX + 0x1]
CMP CL, 0x1
JZ loc_10
-> c_next:loc_b c_to:loc_10
loc_10
LEA EBX, DWORD PTR [EBX + 0x1]
-> c_next:loc_13
loc_b
LEA EBX, DWORD PTR [EBX + 0xFFFFFFFF]
JMP loc_13
-> c_to:loc_13
loc_13
MOV EAX, EBX
RET
Инициализация JIT-движка со стеком:
>>> jitter = machine.jitter(loc_db, jit_type = ' python ' )
>>> jitter.init_stack()
Добавьте шеллкод в произвольную ячейку памяти:
>>> run_addr = 0x 40000000
>>> from miasm.jitter.csts import PAGE_READ , PAGE_WRITE
>>> jitter.vm.add_memory_page(run_addr, PAGE_READ | PAGE_WRITE , s)
Создайте дозорный, чтобы перехватить возврат шеллкода:
def code_sentinelle ( jitter ):
jitter . running = False
jitter . pc = 0
return True
> >> jitter . add_breakpoint ( 0x1337beef , code_sentinelle )
> >> jitter . push_uint32_t ( 0x1337beef )
Активные журналы:
>>> jitter.set_trace_log()
Запуск по произвольному адресу:
>>> jitter.init_run(run_addr)
>>> jitter.continue_run()
RAX 0000000000000000 RBX 0000000000000000 RCX 0000000000000000 RDX 0000000000000000
RSI 0000000000000000 RDI 0000000000000000 RSP 000000000123FFF8 RBP 0000000000000000
zf 0000000000000000 nf 0000000000000000 of 0000000000000000 cf 0000000000000000
RIP 0000000040000000
40000000 LEA ECX, DWORD PTR [ECX+0x4]
RAX 0000000000000000 RBX 0000000000000000 RCX 0000000000000004 RDX 0000000000000000
RSI 0000000000000000 RDI 0000000000000000 RSP 000000000123FFF8 RBP 0000000000000000
zf 0000000000000000 nf 0000000000000000 of 0000000000000000 cf 0000000000000000
....
4000000e JMP loc_0000000040000013:0x40000013
RAX 0000000000000000 RBX 0000000000000000 RCX 0000000000000004 RDX 0000000000000000
RSI 0000000000000000 RDI 0000000000000000 RSP 000000000123FFF8 RBP 0000000000000000
zf 0000000000000000 nf 0000000000000000 of 0000000000000000 cf 0000000000000000
RIP 0000000040000013
40000013 MOV EAX, EBX
RAX 0000000000000000 RBX 0000000000000000 RCX 0000000000000004 RDX 0000000000000000
RSI 0000000000000000 RDI 0000000000000000 RSP 000000000123FFF8 RBP 0000000000000000
zf 0000000000000000 nf 0000000000000000 of 0000000000000000 cf 0000000000000000
RIP 0000000040000013
40000015 RET
>>>
Взаимодействие с джиттером:
>>> jitter.vm
ad 1230000 size 10000 RW_ hpad 0x2854b40
ad 40000000 size 16 RW_ hpad 0x25e0ed0
>>> hex (jitter.cpu. EAX )
'0x0L'
>>> jitter.cpu. ESI = 12
Инициализация пула IR:
>>> lifter = machine.lifter_model_call(loc_db)
>>> ircfg = lifter.new_ircfg_from_asmcfg(asmcfg)
Инициализация движка с символическими значениями по умолчанию:
>>> from miasm.ir.symbexec import SymbolicExecutionEngine
>>> sb = SymbolicExecutionEngine(lifter)
Запускаем выполнение:
>>> symbolic_pc = sb.run_at(ircfg, 0 )
>>> print (symbolic_pc)
((ECX + 0x4)[0:8] + 0xFF)?(0xB,0x10)
То же самое с журналами шагов (отображаются только изменения):
>>> sb = SymbolicExecutionEngine(lifter, machine.mn.regs.regs_init)
>>> symbolic_pc = sb.run_at(ircfg, 0 , step = True )
Instr LEA ECX, DWORD PTR [ECX + 0x4]
Assignblk:
ECX = ECX + 0x4
________________________________________________________________________________
ECX = ECX + 0x4
________________________________________________________________________________
Instr LEA EBX, DWORD PTR [EBX + 0x1]
Assignblk:
EBX = EBX + 0x1
________________________________________________________________________________
EBX = EBX + 0x1
ECX = ECX + 0x4
________________________________________________________________________________
Instr CMP CL, 0x1
Assignblk:
zf = (ECX[0:8] + -0x1)?(0x0,0x1)
nf = (ECX[0:8] + -0x1)[7:8]
pf = parity((ECX[0:8] + -0x1) & 0xFF)
of = ((ECX[0:8] ^ (ECX[0:8] + -0x1)) & (ECX[0:8] ^ 0x1))[7:8]
cf = (((ECX[0:8] ^ 0x1) ^ (ECX[0:8] + -0x1)) ^ ((ECX[0:8] ^ (ECX[0:8] + -0x1)) & (ECX[0:8] ^ 0x1)))[7:8]
af = ((ECX[0:8] ^ 0x1) ^ (ECX[0:8] + -0x1))[4:5]
________________________________________________________________________________
af = (((ECX + 0x4)[0:8] + 0xFF) ^ (ECX + 0x4)[0:8] ^ 0x1)[4:5]
pf = parity((ECX + 0x4)[0:8] + 0xFF)
zf = ((ECX + 0x4)[0:8] + 0xFF)?(0x0,0x1)
ECX = ECX + 0x4
of = ((((ECX + 0x4)[0:8] + 0xFF) ^ (ECX + 0x4)[0:8]) & ((ECX + 0x4)[0:8] ^ 0x1))[7:8]
nf = ((ECX + 0x4)[0:8] + 0xFF)[7:8]
cf = (((((ECX + 0x4)[0:8] + 0xFF) ^ (ECX + 0x4)[0:8]) & ((ECX + 0x4)[0:8] ^ 0x1)) ^ ((ECX + 0x4)[0:8] + 0xFF) ^ (ECX + 0x4)[0:8] ^ 0x1)[7:8]
EBX = EBX + 0x1
________________________________________________________________________________
Instr JZ loc_key_1
Assignblk:
IRDst = zf?(loc_key_1,loc_key_2)
EIP = zf?(loc_key_1,loc_key_2)
________________________________________________________________________________
af = (((ECX + 0x4)[0:8] + 0xFF) ^ (ECX + 0x4)[0:8] ^ 0x1)[4:5]
EIP = ((ECX + 0x4)[0:8] + 0xFF)?(0xB,0x10)
pf = parity((ECX + 0x4)[0:8] + 0xFF)
IRDst = ((ECX + 0x4)[0:8] + 0xFF)?(0xB,0x10)
zf = ((ECX + 0x4)[0:8] + 0xFF)?(0x0,0x1)
ECX = ECX + 0x4
of = ((((ECX + 0x4)[0:8] + 0xFF) ^ (ECX + 0x4)[0:8]) & ((ECX + 0x4)[0:8] ^ 0x1))[7:8]
nf = ((ECX + 0x4)[0:8] + 0xFF)[7:8]
cf = (((((ECX + 0x4)[0:8] + 0xFF) ^ (ECX + 0x4)[0:8]) & ((ECX + 0x4)[0:8] ^ 0x1)) ^ ((ECX + 0x4)[0:8] + 0xFF) ^ (ECX + 0x4)[0:8] ^ 0x1)[7:8]
EBX = EBX + 0x1
________________________________________________________________________________
>>>
Повторите выполнение с конкретным ECX. Здесь символическое/конколическое выполнение достигает конца шеллкода:
>>> from miasm.expression.expression import ExprInt
>>> sb.symbols[machine.mn.regs. ECX ] = ExprInt( - 3 , 32 )
>>> symbolic_pc = sb.run_at(ircfg, 0 , step = True )
Instr LEA ECX, DWORD PTR [ECX + 0x4]
Assignblk:
ECX = ECX + 0x4
________________________________________________________________________________
af = (((ECX + 0x4)[0:8] + 0xFF) ^ (ECX + 0x4)[0:8] ^ 0x1)[4:5]
EIP = ((ECX + 0x4)[0:8] + 0xFF)?(0xB,0x10)
pf = parity((ECX + 0x4)[0:8] + 0xFF)
IRDst = ((ECX + 0x4)[0:8] + 0xFF)?(0xB,0x10)
zf = ((ECX + 0x4)[0:8] + 0xFF)?(0x0,0x1)
ECX = 0x1
of = ((((ECX + 0x4)[0:8] + 0xFF) ^ (ECX + 0x4)[0:8]) & ((ECX + 0x4)[0:8] ^ 0x1))[7:8]
nf = ((ECX + 0x4)[0:8] + 0xFF)[7:8]
cf = (((((ECX + 0x4)[0:8] + 0xFF) ^ (ECX + 0x4)[0:8]) & ((ECX + 0x4)[0:8] ^ 0x1)) ^ ((ECX + 0x4)[0:8] + 0xFF) ^ (ECX + 0x4)[0:8] ^ 0x1)[7:8]
EBX = EBX + 0x1
________________________________________________________________________________
Instr LEA EBX, DWORD PTR [EBX + 0x1]
Assignblk:
EBX = EBX + 0x1
________________________________________________________________________________
af = (((ECX + 0x4)[0:8] + 0xFF) ^ (ECX + 0x4)[0:8] ^ 0x1)[4:5]
EIP = ((ECX + 0x4)[0:8] + 0xFF)?(0xB,0x10)
pf = parity((ECX + 0x4)[0:8] + 0xFF)
IRDst = ((ECX + 0x4)[0:8] + 0xFF)?(0xB,0x10)
zf = ((ECX + 0x4)[0:8] + 0xFF)?(0x0,0x1)
ECX = 0x1
of = ((((ECX + 0x4)[0:8] + 0xFF) ^ (ECX + 0x4)[0:8]) & ((ECX + 0x4)[0:8] ^ 0x1))[7:8]
nf = ((ECX + 0x4)[0:8] + 0xFF)[7:8]
cf = (((((ECX + 0x4)[0:8] + 0xFF) ^ (ECX + 0x4)[0:8]) & ((ECX + 0x4)[0:8] ^ 0x1)) ^ ((ECX + 0x4)[0:8] + 0xFF) ^ (ECX + 0x4)[0:8] ^ 0x1)[7:8]
EBX = EBX + 0x2
________________________________________________________________________________
Instr CMP CL, 0x1
Assignblk:
zf = (ECX[0:8] + -0x1)?(0x0,0x1)
nf = (ECX[0:8] + -0x1)[7:8]
pf = parity((ECX[0:8] + -0x1) & 0xFF)
of = ((ECX[0:8] ^ (ECX[0:8] + -0x1)) & (ECX[0:8] ^ 0x1))[7:8]
cf = (((ECX[0:8] ^ 0x1) ^ (ECX[0:8] + -0x1)) ^ ((ECX[0:8] ^ (ECX[0:8] + -0x1)) & (ECX[0:8] ^ 0x1)))[7:8]
af = ((ECX[0:8] ^ 0x1) ^ (ECX[0:8] + -0x1))[4:5]
________________________________________________________________________________
af = 0x0
EIP = ((ECX + 0x4)[0:8] + 0xFF)?(0xB,0x10)
pf = 0x1
IRDst = ((ECX + 0x4)[0:8] + 0xFF)?(0xB,0x10)
zf = 0x1
ECX = 0x1
of = 0x0
nf = 0x0
cf = 0x0
EBX = EBX + 0x2
________________________________________________________________________________
Instr JZ loc_key_1
Assignblk:
IRDst = zf?(loc_key_1,loc_key_2)
EIP = zf?(loc_key_1,loc_key_2)
________________________________________________________________________________
af = 0x0
EIP = 0x10
pf = 0x1
IRDst = 0x10
zf = 0x1
ECX = 0x1
of = 0x0
nf = 0x0
cf = 0x0
EBX = EBX + 0x2
________________________________________________________________________________
Instr LEA EBX, DWORD PTR [EBX + 0x1]
Assignblk:
EBX = EBX + 0x1
________________________________________________________________________________
af = 0x0
EIP = 0x10
pf = 0x1
IRDst = 0x10
zf = 0x1
ECX = 0x1
of = 0x0
nf = 0x0
cf = 0x0
EBX = EBX + 0x3
________________________________________________________________________________
Instr LEA EBX, DWORD PTR [EBX + 0x1]
Assignblk:
IRDst = loc_key_3
________________________________________________________________________________
af = 0x0
EIP = 0x10
pf = 0x1
IRDst = 0x13
zf = 0x1
ECX = 0x1
of = 0x0
nf = 0x0
cf = 0x0
EBX = EBX + 0x3
________________________________________________________________________________
Instr MOV EAX, EBX
Assignblk:
EAX = EBX
________________________________________________________________________________
af = 0x0
EIP = 0x10
pf = 0x1
IRDst = 0x13
zf = 0x1
ECX = 0x1
of = 0x0
nf = 0x0
cf = 0x0
EBX = EBX + 0x3
EAX = EBX + 0x3
________________________________________________________________________________
Instr RET
Assignblk:
IRDst = @32[ESP[0:32]]
ESP = {ESP[0:32] + 0x4 0 32}
EIP = @32[ESP[0:32]]
________________________________________________________________________________
af = 0x0
EIP = @32[ESP]
pf = 0x1
IRDst = @32[ESP]
zf = 0x1
ECX = 0x1
of = 0x0
nf = 0x0
cf = 0x0
EBX = EBX + 0x3
ESP = ESP + 0x4
EAX = EBX + 0x3
________________________________________________________________________________
>>>
В Miasm встроен собственный дизассемблер, промежуточный язык и семантика инструкций. Он написан на Python.
Для эмуляции кода он использует LLVM, GCC, Clang или Python для JIT-компиляции промежуточного представления. Он может эмулировать шеллкоды и все или части двоичных файлов. Обратные вызовы Python могут выполняться для взаимодействия с выполнением, например, для эмуляции эффектов библиотечных функций.
Некоторые ресурсы документации доступны в папке doc.
Доступна автоматически сгенерированная документация:
Миазм использует:
Чтобы включить код JIT, необходим один из следующих модулей:
«Необязательный» Миазм также может использовать:
Для использования джиттера рекомендуется использовать GCC или LLVM.
pip install llvmlite
или установка из llvmlite$ cd miasm_directory
$ python setup.py build
$ sudo python setup.py install
Если что-то пойдет не так во время компиляции одного из модулей джиттера, Miasm пропустит ошибку и отключит соответствующий модуль (см. выходные данные компиляции).
Большинство плагинов IDA Miasm используют подмножество функций Miasm. Быстрый способ заставить их работать — добавить:
pyparsing.py
в C:...IDApython
или pip install pyparsing
miasm/miasm
в C:...IDApython
Будут доступны все функции, кроме связанных с JITter. Для более полной установки обратитесь к параграфам выше.
Миазм поставляется с набором регрессионных тестов. Чтобы запустить их все:
cd miasm_directory/test
# Run tests using our own test runner
python test_all.py
# Run tests using standard frameworks (slower, require 'parameterized')
python -m unittest test_all.py # sequential, requires 'unittest'
python -m pytest test_all.py # sequential, requires 'pytest'
python -m pytest -n auto test_all.py # parallel, requires 'pytest' and 'pytest-xdist'
Можно указать некоторые параметры:
-m
-c
-t long
(исключает длинные тесты)