Trax-это сквозная библиотека для глубокого обучения, которая фокусируется на четком коде и скорости. Он активно используется и поддерживается в команде Google Brain. Этот ноутбук (запустите его в Colab) показывает, как использовать Trax и где вы можете найти больше информации.
Мы приветствуем вклад в Trax! Мы приветствуем PRS с кодом для новых моделей и слоев, а также улучшения нашего кода и документации. Мы особенно любим тетради , которые объясняют, как модели работают, и показывают, как их использовать для решения проблем!
Вот несколько примеров тетрадей:-
trax.data
APIОбщая установка
Выполните следующую ячейку (один раз), прежде чем запустить какие -либо образцы кода.
import os
import numpy as np
!p ip install - q - U trax
import trax
Вот как вы создаете англо-германский переводчик в нескольких строках кода:
# Create a Transformer model.
# Pre-trained model config in gs://trax-ml/models/translation/ende_wmt32k.gin
model = trax . models . Transformer (
input_vocab_size = 33300 ,
d_model = 512 , d_ff = 2048 ,
n_heads = 8 , n_encoder_layers = 6 , n_decoder_layers = 6 ,
max_len = 2048 , mode = 'predict' )
# Initialize using pre-trained weights.
model . init_from_file ( 'gs://trax-ml/models/translation/ende_wmt32k.pkl.gz' ,
weights_only = True )
# Tokenize a sentence.
sentence = 'It is nice to learn new things today!'
tokenized = list ( trax . data . tokenize ( iter ([ sentence ]), # Operates on streams.
vocab_dir = 'gs://trax-ml/vocabs/' ,
vocab_file = 'ende_32k.subword' ))[ 0 ]
# Decode from the Transformer.
tokenized = tokenized [ None , :] # Add batch dimension.
tokenized_translation = trax . supervised . decoding . autoregressive_sample (
model , tokenized , temperature = 0.0 ) # Higher temperature: more diverse results.
# De-tokenize,
tokenized_translation = tokenized_translation [ 0 ][: - 1 ] # Remove batch and EOS.
translation = trax . data . detokenize ( tokenized_translation ,
vocab_dir = 'gs://trax-ml/vocabs/' ,
vocab_file = 'ende_32k.subword' )
print ( translation )
Es ist schön, heute neue Dinge zu lernen!
Trax включает в себя базовые модели (такие как Resnet, LSTM, трансформатор) и RL -алгоритмы (например, Atreforce, A2C, PPO). Он также активно используется для исследований и включает в себя новые модели, такие как The Reformer и новые алгоритмы RL, такие как AWR. Trax имеет привязки с большим количеством наборов данных глубокого обучения, включая наборы данных Tensor2tensor и Tensorflow.
Вы можете использовать Trax в качестве библиотеки из ваших собственных сценариев Python и ноутбуков или в качестве бинарного из оболочки, что может быть более удобным для обучения больших моделей. Он работает без каких -либо изменений в процессорах, графических процессорах и TPU.
Здесь вы можете узнать, как работает Trax, как создавать новые модели и как обучать их на своих собственных данных.
Основными единицами, проходящими через модели TRAX, являются тензоры - многомерные массивы, иногда также известные как массивы Numpy, из -за наиболее широко используемого пакета для тензорных операций - numpy
. Вы должны взглянуть на руководство Numpy, если вы не знаете, как работать на Tensors: Trax также использует Numpy API для этого.
В Trax мы хотим, чтобы операции Numpy работали очень быстро, используя графические процессоры и TPU, чтобы ускорить их. Мы также хотим автоматически вычислять градиенты функций на тензорах. Это делается в пакете trax.fastmath
благодаря его бэкэндам - JAX и Tensorflow Numpy.
from trax . fastmath import numpy as fastnp
trax . fastmath . use_backend ( 'jax' ) # Can be 'jax' or 'tensorflow-numpy'.
matrix = fastnp . array ([[ 1 , 2 , 3 ], [ 4 , 5 , 6 ], [ 7 , 8 , 9 ]])
print ( f'matrix = n { matrix } ' )
vector = fastnp . ones ( 3 )
print ( f'vector = { vector } ' )
product = fastnp . dot ( vector , matrix )
print ( f'product = { product } ' )
tanh = fastnp . tanh ( product )
print ( f'tanh(product) = { tanh } ' )
matrix =
[[1 2 3]
[4 5 6]
[7 8 9]]
vector = [1. 1. 1.]
product = [12. 15. 18.]
tanh(product) = [0.99999994 0.99999994 0.99999994]
Градиенты могут быть рассчитаны с использованием trax.fastmath.grad
.
def f ( x ):
return 2.0 * x * x
grad_f = trax . fastmath . grad ( f )
print ( f'grad(2x^2) at 1 = { grad_f ( 1.0 ) } ' )
grad(2x^2) at 1 = 4.0
Слои являются основными строительными блоками моделей TRAX. Вы узнаете все о них во вступлении в слои, но сейчас просто посмотрите на реализацию одного основного слоя Trax, Embedding
:
class Embedding ( base . Layer ):
"""Trainable layer that maps discrete tokens/IDs to vectors."""
def __init__ ( self ,
vocab_size ,
d_feature ,
kernel_initializer = init . RandomNormalInitializer ( 1.0 )):
"""Returns an embedding layer with given vocabulary size and vector size.
Args:
vocab_size: Size of the input vocabulary. The layer will assign a unique
vector to each ID in `range(vocab_size)`.
d_feature: Dimensionality/depth of the output vectors.
kernel_initializer: Function that creates (random) initial vectors for
the embedding.
"""
super (). __init__ ( name = f'Embedding_ { vocab_size } _ { d_feature } ' )
self . _d_feature = d_feature # feature dimensionality
self . _vocab_size = vocab_size
self . _kernel_initializer = kernel_initializer
def forward ( self , x ):
"""Returns embedding vectors corresponding to input token IDs.
Args:
x: Tensor of token IDs.
Returns:
Tensor of embedding vectors.
"""
return jnp . take ( self . weights , x , axis = 0 , mode = 'clip' )
def init_weights_and_state ( self , input_signature ):
"""Returns tensor of newly initialized embedding vectors."""
del input_signature
shape_w = ( self . _vocab_size , self . _d_feature )
w = self . _kernel_initializer ( shape_w , self . rng )
self . weights = w
Слои с обучаемыми весами, такими как Embedding
должны быть инициализированы с помощью подписи (форма и dtype) ввода, а затем можно запустить, вызывая их.
from trax import layers as tl
# Create an input tensor x.
x = np . arange ( 15 )
print ( f'x = { x } ' )
# Create the embedding layer.
embedding = tl . Embedding ( vocab_size = 20 , d_feature = 32 )
embedding . init ( trax . shapes . signature ( x ))
# Run the layer -- y = embedding(x).
y = embedding ( x )
print ( f'shape of y = { y . shape } ' )
x = [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14]
shape of y = (15, 32)
Модели в Trax построены из слоев, чаще всего используя Serial
и Branch
комбинаторы. Вы можете прочитать больше об этих комбинаторах во вступлении в слои и увидеть код для многих моделей в trax/models/
, например, именно так реализована модель языка трансформатора. Ниже приведен пример того, как построить модель классификации настроений.
model = tl . Serial (
tl . Embedding ( vocab_size = 8192 , d_feature = 256 ),
tl . Mean ( axis = 1 ), # Average on axis 1 (length of sentence).
tl . Dense ( 2 ), # Classify 2 classes.
tl . LogSoftmax () # Produce log-probabilities.
)
# You can print model structure.
print ( model )
Serial[
Embedding_8192_256
Mean
Dense_2
LogSoftmax
]
Чтобы тренировать свою модель, вам нужны данные. В Trax потоки данных представлены в виде итераторов Python, поэтому вы можете позвонить next(data_stream)
и получить кортеж, например, (inputs, targets)
. Trax позволяет легко использовать наборы данных TensorFlow, и вы также можете получить итератор из своего собственного текстового файла, используя стандартный open('my_file.txt')
.
train_stream = trax . data . TFDS ( 'imdb_reviews' , keys = ( 'text' , 'label' ), train = True )()
eval_stream = trax . data . TFDS ( 'imdb_reviews' , keys = ( 'text' , 'label' ), train = False )()
print ( next ( train_stream )) # See one example.
(b"This was an absolutely terrible movie. Don't be lured in by Christopher Walken or Michael Ironside. Both are great actors, but this must simply be their worst role in history. Even their great acting could not redeem this movie's ridiculous storyline. This movie is an early nineties US propaganda piece. The most pathetic scenes were those when the Columbian rebels were making their cases for revolutions. Maria Conchita Alonso appeared phony, and her pseudo-love affair with Walken was nothing but a pathetic emotional plug in a movie that was devoid of any real meaning. I am disappointed that there are movies like this, ruining actor's like Christopher Walken's good name. I could barely sit through it.", 0)
Используя модуль trax.data
, вы можете создать входные трубопроводы, например, для токенизации и перетасовки ваших данных. Вы создаете конвейеры данных, используя trax.data.Serial
, и это функции, которые вы применяете к потокам для создания обработанных потоков.
data_pipeline = trax . data . Serial (
trax . data . Tokenize ( vocab_file = 'en_8k.subword' , keys = [ 0 ]),
trax . data . Shuffle (),
trax . data . FilterByLength ( max_length = 2048 , length_keys = [ 0 ]),
trax . data . BucketByLength ( boundaries = [ 32 , 128 , 512 , 2048 ],
batch_sizes = [ 256 , 64 , 16 , 4 , 1 ],
length_keys = [ 0 ]),
trax . data . AddLossWeights ()
)
train_batches_stream = data_pipeline ( train_stream )
eval_batches_stream = data_pipeline ( eval_stream )
example_batch = next ( train_batches_stream )
print ( f'shapes = { [ x . shape for x in example_batch ] } ' ) # Check the shapes.
shapes = [(4, 1024), (4,), (4,)]
Если у вас есть модель и данные, используйте trax.supervised.training
для определения задач обучения и оценки и создания обучающего цикла. Петля Trax Training Loop оптимизирует обучение и создаст для вас журналы Tensorboard и модели.
from trax . supervised import training
# Training task.
train_task = training . TrainTask (
labeled_data = train_batches_stream ,
loss_layer = tl . WeightedCategoryCrossEntropy (),
optimizer = trax . optimizers . Adam ( 0.01 ),
n_steps_per_checkpoint = 500 ,
)
# Evaluaton task.
eval_task = training . EvalTask (
labeled_data = eval_batches_stream ,
metrics = [ tl . WeightedCategoryCrossEntropy (), tl . WeightedCategoryAccuracy ()],
n_eval_batches = 20 # For less variance in eval numbers.
)
# Training loop saves checkpoints to output_dir.
output_dir = os . path . expanduser ( '~/output_dir/' )
!r m - rf { output_dir }
training_loop = training . Loop ( model ,
train_task ,
eval_tasks = [ eval_task ],
output_dir = output_dir )
# Run 2000 steps (batches).
training_loop . run ( 2000 )
Step 1: Ran 1 train steps in 0.78 secs
Step 1: train WeightedCategoryCrossEntropy | 1.33800304
Step 1: eval WeightedCategoryCrossEntropy | 0.71843582
Step 1: eval WeightedCategoryAccuracy | 0.56562500
Step 500: Ran 499 train steps in 5.77 secs
Step 500: train WeightedCategoryCrossEntropy | 0.62914723
Step 500: eval WeightedCategoryCrossEntropy | 0.49253047
Step 500: eval WeightedCategoryAccuracy | 0.74062500
Step 1000: Ran 500 train steps in 5.03 secs
Step 1000: train WeightedCategoryCrossEntropy | 0.42949259
Step 1000: eval WeightedCategoryCrossEntropy | 0.35451687
Step 1000: eval WeightedCategoryAccuracy | 0.83750000
Step 1500: Ran 500 train steps in 4.80 secs
Step 1500: train WeightedCategoryCrossEntropy | 0.41843575
Step 1500: eval WeightedCategoryCrossEntropy | 0.35207348
Step 1500: eval WeightedCategoryAccuracy | 0.82109375
Step 2000: Ran 500 train steps in 5.35 secs
Step 2000: train WeightedCategoryCrossEntropy | 0.38129005
Step 2000: eval WeightedCategoryCrossEntropy | 0.33760912
Step 2000: eval WeightedCategoryAccuracy | 0.85312500
После обучения модели запустите ее как любой слой, чтобы получить результаты.
example_input = next ( eval_batches_stream )[ 0 ][ 0 ]
example_input_str = trax . data . detokenize ( example_input , vocab_file = 'en_8k.subword' )
print ( f'example input_str: { example_input_str } ' )
sentiment_log_probs = model ( example_input [ None , :]) # Add batch dimension.
print ( f'Model returned sentiment probabilities: { np . exp ( sentiment_log_probs ) } ' )
example input_str: I first saw this when I was a teen in my last year of Junior High. I was riveted to it! I loved the special effects, the fantastic places and the trial-aspect and flashback method of telling the story.<br /><br />Several years later I read the book and while it was interesting and I could definitely see what Swift was trying to say, I think that while it's not as perfect as the book for social commentary, as a story the movie is better. It makes more sense to have it be one long adventure than having Gulliver return after each voyage and making a profit by selling the tiny Lilliput sheep or whatever.<br /><br />It's much more arresting when everyone thinks he's crazy and the sheep DO make a cameo anyway. As a side note, when I saw Laputa I was stunned. It looks very much like the Kingdom of Zeal from the Chrono Trigger video game (1995) that also made me like this mini-series even more.<br /><br />I saw it again about 4 years ago, and realized that I still enjoyed it just as much. Really high quality stuff and began an excellent run of Sweeps mini-series for NBC who followed it up with the solid Merlin and interesting Alice in Wonderland.<pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>
Model returned sentiment probabilities: [[3.984500e-04 9.996014e-01]]