إطار عمل Darknet للكشف عن الكائنات وYOLO
Darknet هو إطار عمل للشبكة العصبية مفتوح المصدر مكتوب بلغات C وC++ وCUDA. YOLO (أنت تنظر مرة واحدة فقط) هو نظام متطور للكشف عن الكائنات في الوقت الفعلي والذي يعمل ضمن إطار عمل Darknet.
اقرأ كيف تساعد Hank.ai مجتمع Darknet/YOLO
الإعلان عن Darknet V3 "الجاز"
راجع موقع Darknet/YOLO
يرجى قراءة الأسئلة الشائعة حول Darknet/YOLO
انضم إلى خادم الفتنة Darknet/YOLO
أوراق
1. ورقة YOLOv7
2. مقياس الورق-YOLOv4
3. ورقة YOLOv4
4. ورقة YOLOv3
معلومات عامة
لا يزال إطار عمل Darknet/YOLO أسرع وأكثر دقة من أطر العمل والإصدارات الأخرى من YOLO. هذا الإطار مجاني بالكامل ومفتوح المصدر. يمكنك دمج Darknet/YOLO في المشاريع والمنتجات الحالية، بما في ذلك المشاريع التجارية، بدون ترخيص أو دفع رسوم.
يمكن لـ Darknet V3 ("Jazz")، الذي تم إصداره في أكتوبر 2024، تشغيل مقاطع فيديو مجموعة بيانات LEGO بدقة تصل إلى 1000 إطارًا في الثانية عند استخدام وحدة معالجة الرسوميات NVIDIA RTX 3090، مما يعني أنه تتم قراءة كل إطار فيديو وتغيير حجمه ومعالجته بواسطة Darknet/YOLO في 1 مللي ثانية أو أقل.
يرجى الانضمام إلى خادم Darknet/YOLO Discord إذا كنت بحاجة إلى مساعدة أو تريد مناقشة Darknet/YOLO: https://discord.gg/zSq8rtW
يمكن تشغيل إصدار وحدة المعالجة المركزية من Darknet/YOLO على أجهزة بسيطة مثل Raspberry Pi والخوادم السحابية وcolab وأجهزة الكمبيوتر المكتبية وأجهزة الكمبيوتر المحمولة وأجهزة التدريب المتطورة. يتطلب إصدار GPU من Darknet/YOLO وحدة معالجة رسومات قادرة على CUDA من NVIDIA.
من المعروف أن Darknet/YOLO يعمل على أنظمة Linux وWindows وMac. انظر تعليمات البناء أدناه.
نسخة دارك نت
1. لم يكن لأداة Darknet الأصلية التي كتبها جوزيف ريدمون في 2013-2017 رقم إصدار. نحن نعتبر هذا الإصدار 0.x.
2. لم يكن لمستودع Darknet الشهير التالي الذي يحتفظ به Alexey Bochkovskiy بين 2017-2021 رقم إصدار أيضًا. نحن نعتبر هذا الإصدار 1.x.
3. كان مستودع Darknet الذي ترعاه Hank.ai ويديره Stéphane Charette بدءًا من عام 2023 هو الأول الذي يحتوي على أمر إصدار. من عام 2023 حتى أواخر عام 2024، تم إرجاع الإصدار 2.x "OAK".
كان الهدف هو محاولة كسر أقل قدر ممكن من الوظائف الحالية مع التعرف على قاعدة التعليمات البرمجية. تم إجراء التغييرات التالية:
أعد كتابة خطوات البناء حتى يكون لدينا طريقة واحدة موحدة للبناء باستخدام CMake على كل من نظامي التشغيل Windows وLinux.
تم تحويل قاعدة التعليمات البرمجية لاستخدام برنامج التحويل البرمجي C++.
تحسين Chart.png أثناء التدريب.
إصلاحات الأخطاء والتحسينات المتعلقة بالأداء، والتي تتعلق في الغالب بتقليل الوقت المستغرق لتدريب الشبكة.
الفرع الأخير من قاعدة التعليمات البرمجية هذا هو الإصدار 2.1 في الفرع v2.
بدأت المرحلة التالية من التطوير في منتصف عام 2024 وتم إصدارها في أكتوبر 2024. يُرجع أمر الإصدار الآن 3.x "JAZZ".
يمكنك دائمًا إجراء فحص لفرع v2 السابق إذا كنت بحاجة إلى تشغيل أحد هذه الأوامر. أخبرنا حتى نتمكن من التحقيق في إضافة أي أوامر مفقودة.
تمت إزالة العديد من الأوامر القديمة والتي لم تتم صيانتها.
العديد من تحسينات الأداء، سواء أثناء التدريب أو أثناء الاستدلال.
تم تعديل واجهة برمجة تطبيقات Legacy C؛ ستحتاج التطبيقات التي تستخدم واجهة برمجة تطبيقات Darknet الأصلية إلى تعديلات طفيفة: https://darknetcv.ai/api/api.html
واجهة برمجة تطبيقات Darknet V3 C وC++ الجديدة: https://darknetcv.ai/api/api.html
تطبيقات جديدة ونموذج التعليمات البرمجية في أمثلة src: https://darknetcv.ai/api/files.html
أوزان MSCOCO المدربة مسبقًا
تم تدريب العديد من الإصدارات الشائعة من YOLO مسبقًا لتوفير الراحة على مجموعة بيانات MSCOCO. تحتوي مجموعة البيانات هذه على 80 فئة، والتي يمكن رؤيتها في الملف النصي cfg/coco.names.
هناك العديد من مجموعات البيانات الأبسط والأوزان المدربة مسبقًا المتاحة لاختبار Darknet/YOLO، مثل LEGO Gears وRolodex. راجع الأسئلة الشائعة حول Darknet/YOLO للحصول على التفاصيل.
يمكن تنزيل أوزان MSCOCO المدربة مسبقًا من عدة مواقع مختلفة، وهي متاحة أيضًا للتنزيل من هذا الريبو:
1. YOLOv2، نوفمبر 2016
- YOLOv2-صغيرة
- YOLOv2-كامل
2. YOLOv3، مايو 2018
- YOLOv3-صغيرة
- YOLOv3-كامل
3. YOLOv4، مايو 2020
- YOLOv4-صغيرة
- YOLOv4-كامل
4. YOLOv7، أغسطس 2022
- YOLOv7-صغيرة
- YOLOv7-كامل
يتم توفير أوزان MSCOCO المدربة مسبقًا للأغراض التجريبية فقط. توجد ملفات .cfg و.names المقابلة لـ MSCOCO في دليل cfg. أوامر المثال:
``باش
wget --no-clobber https://github.com/hank-ai/darknet/releases/download/v2.0/yolov4-tiny.weights
darknet02displayannotatedimages coco.names yolov4-tiny.cfg yolov4-tiny.weights image1.jpg
darknet03display_videos coco.names yolov4-tiny.cfg yolov4-tiny.weights video1.avi
DarkHelp coco.names yolov4-tiny.cfg yolov4-tiny.weights image1.jpg
DarkHelp coco.names yolov4-tiny.cfg yolov4-tiny.weights video1.avi
`
لاحظ أنه من المتوقع من الأشخاص تدريب شبكاتهم الخاصة. يُستخدم MSCOCO عادةً للتأكد من أن كل شيء يعمل بشكل صحيح.
مبنى
تم دمج طرق البناء المختلفة المتوفرة في الماضي (ما قبل 2023) معًا في حل واحد موحد. يتطلب Darknet الإصدار 17 من لغة C++ أو الإصدار الأحدث، OpenCV، ويستخدم CMake لإنشاء ملفات المشروع الضرورية.
لا تحتاج إلى معرفة لغة C++ لإنشاء أو تثبيت أو تشغيل Darknet/YOLO، بنفس الطريقة التي لا تحتاج فيها إلى أن تكون ميكانيكيًا لقيادة السيارة.
احذر إذا كنت تتبع برامج تعليمية قديمة تحتوي على خطوات إنشاء أكثر تعقيدًا، أو تقوم بإنشاء خطوات لا تتطابق مع ما هو موجود في هذا الملف التمهيدي. بدأت خطوات البناء الجديدة كما هو موضح أدناه في أغسطس 2023.
ننصح مطوري البرامج بزيارة https://darknetcv.ai/ للحصول على معلومات حول الأجزاء الداخلية لإطار عمل الكشف عن الكائنات Darknet/YOLO.
جوجل كولاب
تعليمات Google Colab هي نفس تعليمات Linux. تتوفر العديد من دفاتر ملاحظات Jupyter التي توضح كيفية القيام بمهام معينة، مثل تدريب شبكة جديدة.
راجع دفاتر الملاحظات في الدليل الفرعي colab، و/أو اتبع تعليمات Linux أدناه.
طريقة لينكس CMake
1. تثبيت المتطلبات الأساسية:
``باش
sudo apt-get install build-essential git libopencv-dev cmake
`
2. استنساخ مستودع Darknet:
``باش
mkdir ~/srccd ~/src
استنساخ بوابة https://github.com/hank-ai/darknetcd darknet
`
3. إنشاء دليل البناء:
``باش
بناء mkdir buildcd
`
4. تكوين وبناء Darknet:
``باش
cmake -DCMAKEBUILDTYPE=إطلاق ..
جعل -j4
`
5. تثبيت الحزمة:
``باش
طَرد
sudo dpkg -i darknet-VERSION.deb
`
اختياري: إذا كان لديك وحدة معالجة رسومات NVIDIA حديثة، فيمكنك تثبيت إما CUDA أو CUDA+cuDNN في هذه المرحلة. إذا تم تثبيته، فسوف يستخدم Darknet وحدة معالجة الرسومات (GPU) الخاصة بك لتسريع معالجة الصور (والفيديو).
يجب عليك حذف ملف CMakeCache.txt من دليل إنشاء Darknet الخاص بك لإجبار CMake على إعادة العثور على كافة الملفات الضرورية. تذكر إعادة بناء Darknet.
يمكن تشغيل Darknet بدونه، ولكن إذا كنت ترغب في تدريب شبكة مخصصة، فيلزم توفر إما CUDA أو CUDA+cuDNN.
تفضل بزيارة https://developer.nvidia.com/cuda-downloads لتنزيل CUDA وتثبيته.
تفضل بزيارة https://developer.nvidia.com/rdp/cudnn-download أو https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html#cudnn-package-manager-installation-overview للتنزيل وتثبيت cuDNN.
بمجرد تثبيت CUDA، تأكد من أنه يمكنك تشغيل nvcc وnvidia-smi. قد تضطر إلى تعديل متغير PATH الخاص بك.
إذا قمت بتثبيت CUDA أو CUDA+cuDNN في وقت لاحق، أو قمت بالترقية إلى إصدار أحدث من برنامج NVIDIA، فاتبع الخطوات التالية:
تفترض هذه التعليمات (ولكنها لا تتطلب!) وجود نظام يعمل بنظام التشغيل Ubuntu 22.04. قم بالتكيف حسب الضرورة إذا كنت تستخدم توزيعًا مختلفًا.
ستحتاج إلى ترقية CMake قبل أن تتمكن من تشغيل الأمر cmake أعلاه. يمكن ترقية CMake على Ubuntu باستخدام الأوامر التالية:
``باش
sudo apt-get purge cmake
Sudo snap install cmake --classic
`
إذا كنت تستخدم bash كصدفة أوامر، فستحتاج إلى إعادة تشغيل الصدفة الخاصة بك في هذه المرحلة. في حالة استخدام الأسماك، يجب أن تلتقط المسار الجديد على الفور.
المستخدمين المتقدمين:
إذا كنت تريد إنشاء ملف تثبيت RPM بدلاً من ملف DEB، فراجع الأسطر ذات الصلة في CM_package.cmake. قبل تشغيل حزمة make -j4 ستحتاج إلى تعديل هذين السطرين:
``باش
مجموعة (CPACKGENERATOR "DEB")# مجموعة (CPACKGENERATOR "RPM")
`
بالنسبة للتوزيعات مثل Centos وOpenSUSE، ستحتاج إلى تبديل هذين الخطين في CM_package.cmake لتكون:
``باش
# مجموعة (CPACK_GENERATOR "DEB")
مجموعة (CPACK_GENERATOR "RPM")
`
لتثبيت حزمة التثبيت بمجرد الانتهاء من بنائها، استخدم مدير الحزم المعتاد للتوزيع الخاص بك. على سبيل المثال، في الأنظمة المستندة إلى Debian مثل Ubuntu:
``باش
sudo dpkg -i darknet-2.0.1-Linux.deb
`
سيؤدي تثبيت حزمة .deb إلى نسخ الملفات التالية:
- /usr/bin/darknet هو برنامج Darknet المعتاد القابل للتنفيذ. قم بتشغيل إصدار darknet من واجهة سطر الأوامر للتأكد من تثبيته بشكل صحيح.
- /usr/include/darknet.h هو Darknet API لمطوري C وC++ وPython.
- /usr/include/darknet_version.h يحتوي على معلومات الإصدار للمطورين.
- /usr/lib/libdarknet.so هي المكتبة التي يمكن الارتباط بها لمطوري C وC++ وPython.
- /opt/darknet/cfg/... هو المكان الذي يتم فيه تخزين كافة قوالب .cfg.
لقد انتهيت الآن! تم إنشاء Darknet وتثبيته في /usr/bin/. قم بتشغيل هذا للاختبار: إصدار darknet.
إذا لم يكن لديك /usr/bin/darknet فهذا يعني أنك لم تقم بتثبيته، بل قمت بإنشائه فقط! تأكد من تثبيت ملف .deb أو .rpm كما هو موضح أعلاه.
طريقة ويندوز CMake
1. تثبيت المتطلبات الأساسية:
``باش
Winget تثبيت Git.Git
تثبيت Winget Kitware.CMake
تثبيت Winget nsis.nsis
تثبيت Winget Microsoft.VisualStudio.2022.Community
`
2. تثبيت دعم Visual Studio C++:
- انقر على قائمة "ابدأ في Windows" وقم بتشغيل "Visual Studio Installer".
- انقر على تعديل.
- اختر تطوير سطح المكتب باستخدام C++.
- انقر على تعديل في الزاوية اليمنى السفلية، ثم انقر على نعم.
3. افتح موجه أوامر المطور لـ VS 2022:
- بمجرد تنزيل كل شيء وتثبيته، انقر فوق قائمة "ابدأ في Windows" مرة أخرى وحدد Developer Command Prompt for VS 2022. لا تستخدم PowerShell في هذه الخطوات؛ سوف تواجه مشاكل!
4. قم بتثبيت Microsoft VCPKG وOpenCV:
``باش
مؤتمر نزع السلاح ج:
mkdir c:srccd c:src
استنساخ بوابة https://github.com/microsoft/vcpkgcd vcpkg
bootstrap-vcpkg.bat
دمج .vcpkg.exe
قم بتثبيت .vcpkg.exe ودمج powershell.vcpkg.exe
تثبيت opencv[contrib,dnn,freetype,jpeg,openmp,png,webp,world]:x64-windows
`
- كن صبورًا في هذه الخطوة الأخيرة حيث قد يستغرق تشغيلها وقتًا طويلاً. يحتاج إلى تنزيل وبناء أشياء كثيرة.
5. استنساخ مستودع Darknet:
``باش
مؤتمر نزع السلاح ج: سرك
استنساخ بوابة https://github.com/hank-ai/darknet.gitcd darknet
بناء mkdir buildcd
`
6. تكوين وبناء Darknet باستخدام CMake:
``باش
cmake -DCMAKEBUILDTYPE=Release -DCMAKETOOLCHAINFILE=C:/src/vcpkg/scripts/buildsystems/vcpkg.cmake ..
msbuild.exe /property:Platform=x64;Configuration=Release /target:Build -maxCpuCount -verbosity:normal -detailedSummary darknet.sln
`
7. بناء حزمة تثبيت NSIS:
``باش
msbuild.exe /property:Platform=x64;التكوين=إصدار PACKAGE.vcxproj
`
اختياري: إذا كان لديك وحدة معالجة رسومات NVIDIA حديثة، فيمكنك تثبيت إما CUDA أو CUDA+cuDNN في هذه المرحلة. إذا تم تثبيته، فسوف يستخدم Darknet وحدة معالجة الرسومات (GPU) الخاصة بك لتسريع معالجة الصور (والفيديو).
يجب عليك حذف ملف CMakeCache.txt من دليل إنشاء Darknet الخاص بك لإجبار CMake على إعادة العثور على كافة الملفات الضرورية. تذكر إعادة بناء Darknet.
يمكن تشغيل Darknet بدونه، ولكن إذا كنت ترغب في تدريب شبكة مخصصة، فيلزم توفر إما CUDA أو CUDA+cuDNN.
تفضل بزيارة https://developer.nvidia.com/cuda-downloads لتنزيل CUDA وتثبيته.
قم بزيارة https://developer.nvidia.com/rdp/cudnn-download أو https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html#download-windows لتنزيل وتثبيت cuDNN.
بمجرد تثبيت CUDA، تأكد من أنه يمكنك تشغيل nvcc.exe وnvidia-smi.exe. قد تضطر إلى تعديل متغير PATH الخاص بك.
بمجرد تنزيل cuDNN، قم بفك ضغط دلائل الحاوية والتضمين والليب ونسخها إلى C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/[version]/. قد تحتاج إلى الكتابة فوق بعض الملفات.
إذا قمت بتثبيت CUDA أو CUDA+cuDNN في وقت لاحق، أو قمت بالترقية إلى إصدار أحدث من برنامج NVIDIA، فاتبع الخطوات التالية:
يجب تثبيت CUDA بعد Visual Studio. إذا قمت بترقية Visual Studio، تذكر إعادة تثبيت CUDA.
بمجرد الانتهاء من جميع الخطوات السابقة بنجاح، ستحتاج إلى استنساخ Darknet وإنشائه. خلال هذه الخطوة، نحتاج أيضًا إلى إخبار CMake بمكان وجود vcpkg حتى يتمكن من العثور على OpenCV والتبعيات الأخرى:
``باش
مؤتمر نزع السلاح ج: سرك
استنساخ بوابة https://github.com/hank-ai/darknet.gitcd darknet
بناء mkdir buildcd
cmake -DCMAKEBUILDTYPE=Release -DCMAKETOOLCHAINFILE=C:/src/vcpkg/scripts/buildsystems/vcpkg.cmake ..
msbuild.exe /property:Platform=x64;Configuration=Release /target:Build -maxCpuCount -verbosity:normal -detailedSummary darknet.sln
msbuild.exe /property:Platform=x64;التكوين=إصدار PACKAGE.vcxproj
`
إذا حصلت على خطأ بشأن بعض ملفات CUDA أو cuDNN DLL المفقودة مثل cublas64_12.dll، فقم بنسخ ملفات CUDA .dll يدويًا إلى نفس دليل الإخراج مثل darknet.exe. على سبيل المثال:
``باش
انسخ "C: Program FilesNVIDIA GPU Computing ToolkitCUDAv12.2bin*.dll" src-cliRelease
`
- (هذا مثال! تحقق للتأكد من الإصدار الذي تقوم بتشغيله، وقم بتشغيل الأمر المناسب لما قمت بتثبيته.)
بمجرد نسخ الملفات، أعد تشغيل الأمر msbuild.exe الأخير لإنشاء حزمة تثبيت NSIS:
``باش
msbuild.exe /property:Platform=x64;التكوين=إصدار PACKAGE.vcxproj
`
المستخدمين المتقدمين:
لاحظ أن إخراج الأمر cmake هو ملف حل Visual Studio عادي، Darknet.sln. إذا كنت مطور برامج يستخدم واجهة المستخدم الرسومية Visual Studio GUI بانتظام بدلاً من msbuild.exe لإنشاء المشاريع، فيمكنك تجاهل سطر الأوامر وتحميل مشروع Darknet في Visual Studio.
يجب أن يكون لديك الآن هذا الملف الذي يمكنك تشغيله: C:srcDarknetbuildsrc-cliReleasedarknet.exe. قم بتشغيل هذا لاختبار: إصدار C:srcDarknetbuildsrc-cliReleasedarknet.exe.
لتثبيت Darknet بشكل صحيح، والمكتبات وملفات التضمين وملفات DLL الضرورية، قم بتشغيل معالج تثبيت NSIS الذي تم إنشاؤه في الخطوة الأخيرة. راجع الملف darknet-VERSION.exe في دليل البناء. على سبيل المثال:
``باش
darknet-2.0.31-win64.exe
`
سيؤدي تثبيت حزمة تثبيت NSIS إلى:
- إنشاء دليل يسمى Darknet، مثل C:Program FilesDarknet.
- قم بتثبيت تطبيق CLI وdarknet.exe ونماذج التطبيقات الأخرى.
- قم بتثبيت ملفات .dll المطلوبة من جهات خارجية، مثل تلك الموجودة في OpenCV.
- قم بتثبيت ملفات Darknet .dll و.lib و.h الضرورية لاستخدام darknet.dll من تطبيق آخر.
- قم بتثبيت ملفات القالب .cfg.
لقد انتهيت الآن! بمجرد انتهاء معالج التثبيت، سيتم تثبيت Darknet في C:Program FilesDarknet. قم بتشغيل هذا لاختبار: إصدار C:Program FilesDarknetbindarknet.exe.
إذا لم يكن لديك C:/Program Files/darknet/bin/darknet.exe فهذا يعني أنك لم تقم بتثبيته، بل قمت بإنشائه فقط! تأكد من مراجعة كل لوحة من معالج تثبيت NSIS في الخطوة السابقة.
باستخدام دارك نت
سطر الأوامر
ما يلي ليس القائمة الكاملة لجميع الأوامر التي يدعمها Darknet.
بالإضافة إلى واجهة سطر الأوامر الخاصة بـ Darknet، لاحظ أيضًا واجهة سطر الأوامر لمشروع DarkHelp والتي توفر واجهة سطر أوامر بديلة لـ Darknet/YOLO. يحتوي DarkHelp CLI أيضًا على العديد من الميزات المتقدمة التي لا تتوفر مباشرة في Darknet. يمكنك استخدام كل من Darknet CLI وDarkHelp CLI معًا؛ فهي ليست حصرية بشكل متبادل.
بالنسبة لمعظم الأوامر الموضحة أدناه، ستحتاج إلى ملف .weights مع ملفات .names و.cfg المقابلة. يمكنك إما تدريب شبكتك الخاصة (نوصي بشدة!) أو تنزيل شبكة عصبية قام شخص ما بتدريبها بالفعل وإتاحتها مجانًا على الإنترنت. تتضمن أمثلة مجموعات البيانات المدربة مسبقًا ما يلي:
LEGO Gears (العثور على الأشياء في الصورة)
Rolodex (البحث عن نص في صورة)
MSCOCO (الكشف القياسي عن الكائنات من فئة 80)
تتضمن أوامر التشغيل ما يلي:
1. قم بإدراج بعض الأوامر والخيارات الممكنة للتشغيل:
``باش
مساعدة على الانترنت المظلم
`
2. التحقق من الإصدار:
``باش
نسخة دارك نت
`
3. توقع باستخدام الصورة:
- الإصدار الثاني:
``باش
اختبار كاشف الانترنت المظلم cars.data Cars.cfg Cars_best.weights image1.jpg
`
- الإصدار 3:
``باش
darknet02displayannotatedimages Cars.cfg image1.jpg
`
- مساعدة الظلام:
``باش
DarkHelp Cars.cfg Cars.cfg Cars_best.weights image1.jpg
`
4. إحداثيات الإخراج:
- الإصدار الثاني:
``باش
اختبار كاشف الشبكة المظلمة للحيوانات. بيانات Animals.cfg Animalbest.weights -extoutput dog.jpg
`
- الإصدار 3:
``باش
darknet01inference_images حيوانات dog.jpg
`
- مساعدة الظلام:
``باش
DarkHelp --json Animals.cfg Animals.names Animal_best.weights dog.jpg
`
5. العمل مع مقاطع الفيديو:
- الإصدار الثاني:
``باش
عرض توضيحي لكاشف الشبكة المظلمة للحيوانات.بيانات الحيوانات.cfg Animalbest.weights -extoutput test.mp4
`
- الإصدار 3:
``باش
darknet03display_videos Animals.cfg test.mp4
`
- مساعدة الظلام:
``باش
DarkHelp Animals.cfg Animals.names Animal_best.weights test.mp4
`
6. القراءة من كاميرا الويب:
- الإصدار الثاني:
``باش
عرض تجريبي لكاشف الشبكة المظلمة Animals.data Animals.cfg Animal_best.weights -c 0
`
- الإصدار 3:
``باش
حيوانات darknet08display_webcam
`
7. حفظ النتائج على الفيديو:
- الإصدار الثاني:
``باش
عرض تجريبي للكشف عن darknet للحيوانات.بيانات الحيوانات.cfg Animalbest.weights test.mp4 -outfilename res.avi
`
- الإصدار 3:
``باش
darknet05processvideosحيوانات متعددة الخيوط.cfg حيوانات.أسماء الحيوانات_أفضل.اختبار الأوزان.mp4
`
- مساعدة الظلام:
``باش
DarkHelp Animals.cfg Animals.names Animal_best.weights test.mp4
`
8. جسون:
- الإصدار الثاني:
``باش
عرض توضيحي لكاشف الشبكة المظلمة للحيوانات.بيانات الحيوانات.cfg Animalbest.weights test50.mp4 -jsonport 8070 -mjpegport 8090 -extoutput
`
- الإصدار 3:
``باش
darknet06imagestojson الحيوانات image1.jpg
`
- مساعدة الظلام:
``باش
DarkHelp --json Animals.names Animals.cfg Animal_best.weights image1.jpg
`
9. التشغيل على وحدة معالجة رسومات محددة:
- الإصدار الثاني:
``باش
عرض تجريبي لكاشف الشبكة المظلمة Animals.data Animals.cfg Animal_best.weights -i 1 test.mp4
`
10. للتحقق من دقة الشبكة العصبية:
``باش
خريطة كاشف الانترنت المظلم القيادة.بيانات القيادة.cfg القيادة_أفضل.الأوزان ...
`
الإخراج:
`
اسم المعرف AvgPrecision TP FN FP TN الدقة ErrorRate الدقة استدعاء الخصوصية FalsePosRate
-- ---- ------------ ------ ------ ------ ------ -------- --------- --------- ------ ----------- ------------
0 مركبة 91.2495 32648 3903 5826 65129 0.9095 0.0905 0.8486 0.8932 0.9179 0.0821
1 دراجة نارية 80.4499 2936 513 569 5393 0.8850 0.1150 0.8377 0.8513 0.9046 0.0954
2 دراجة 89.0912 570 124 104 3548 0.9475 0.0525 0.8457 0.8213 0.9715 0.0285
3 أشخاص 76.7937 7072 1727 2574 27523 0.8894 0.1106 0.7332 0.8037 0.9145 0.0855
4 مركبات عديدة 64.3089 1068 509 733 11288 0.9087 0.0913 0.5930 0.6772 0.9390 0.0610
5 الضوء الأخضر 86.8118 1969 239 510 4116 0.8904 0.1096 0.7943 0.8918 0.8898 0.1102
6 الضوء الأصفر 82.0390 126 38 30 1239 0.9525 0.0475 0.8077 0.7683 0.9764 0.0236
7 الضوء الأحمر 94.1033 3449 217 451 4643 0.9237 0.0763 0.8844 0.9408 0.9115 0.0885
`
11. للتحقق من الدقة mAP@IoU=75:
``باش
خريطة كاشف Darknet للحيوانات.بيانات الحيوانات.cfg Animalbest.weights -iouthresh 0.75
`
12. إعادة حساب المراسي:
``باش
كاشف الشبكة المظلمة calcanchors Animals.data -عدد_العناقيد 6 -العرض 320 -الارتفاع 256
`
13. تدريب شبكة جديدة:
``باش
كاشف الشبكة المظلمة -خريطة -dont_show تدريب الحيوانات.بيانات الحيوانات.cfg
`
تمرين
روابط سريعة للأقسام ذات الصلة من الأسئلة الشائعة حول Darknet/YOLO:
كيف أقوم بإعداد الملفات والأدلة الخاصة بي؟
ما هو ملف التكوين الذي يجب أن أستخدمه؟
ما الأمر الذي يجب أن أستخدمه عند تدريب شبكتي الخاصة؟
إن أبسط طريقة للتعليق والتدريب هي استخدام DarkMark لإنشاء جميع ملفات Darknet الضرورية. هذه بالتأكيد هي الطريقة الموصى بها لتدريب شبكة عصبية جديدة.
إذا كنت تفضل إعداد الملفات المتنوعة يدويًا لتدريب شبكة مخصصة، فاتبع الخطوات التالية:
1. قم بإنشاء مجلد جديد لمشروعك:
- في هذا المثال، سيتم إنشاء شبكة عصبية لكشف الحيوانات، لذلك يتم إنشاء الدليل التالي: ~/nn/animals/.
2. انسخ ملف التكوين كقالب:
- انسخ أحد ملفات تكوين Darknet التي ترغب في استخدامها كقالب. على سبيل المثال، راجع cfg/yolov4-tiny.cfg. ضع هذا في المجلد الذي قمت بإنشائه. في هذا المثال، لدينا الآن ~/nn/animals/animals.cfg.
3. قم بإنشاء ملف نصي Animals.names:
- قم بإنشاء ملف نصي Animals.names في نفس المجلد الذي وضعت فيه ملف التكوين. في هذا المثال، لدينا الآن ~/nn/animals/animals.names.
4. قم بتحرير ملف أسماء الحيوانات:
- قم بتحرير ملف أسماء الحيوانات باستخدام محرر النصوص الخاص بك. قم بإدراج الفئات التي تريد استخدامها. يجب أن يكون لديك إدخال واحد بالضبط في كل سطر، بدون أسطر فارغة أو تعليقات. في هذا المثال، سيحتوي ملف .names على 4 أسطر بالضبط:
`
كلب
قطة
طائر
حصان
`
5. قم بإنشاء ملف نصي Animals.data:
- قم بإنشاء ملف نصي Animals.data في نفس المجلد. في هذا المثال، سيحتوي ملف .data على:
`
الفصول = 4
القطار = /home/username/nn/animals/animals_train.txt
صالح = /home/username/nn/animals/animals_valid.txt
الأسماء = /home/username/nn/animals/animals.names
النسخ الاحتياطي = /home/username/nn/animals
`
6. قم بإنشاء مجلد للصور والتعليقات التوضيحية:
- قم بإنشاء مجلد حيث يمكنك تخزين الصور والتعليقات التوضيحية. على سبيل المثال، قد يكون هذا ~/nn/animals/dataset. ستحتاج كل صورة إلى ملف .txt مطابق يصف التعليقات التوضيحية لتلك الصورة. تنسيق ملفات التعليقات التوضيحية .txt محدد للغاية. لا يمكنك إنشاء هذه الملفات يدويًا نظرًا لأن كل تعليق توضيحي يجب أن يحتوي على الإحداثيات الدقيقة للتعليق التوضيحي. راجع DarkMark أو أي برنامج آخر مشابه لإضافة تعليقات توضيحية إلى صورك. تم توضيح تنسيق التعليقات التوضيحية YOLO في الأسئلة الشائعة حول Darknet/YOLO.
7. قم بإنشاء الملفات النصية "القطار" و"الصالحة":
- قم بإنشاء الملفات النصية "القطار" و"الصالحة" المذكورة في ملف البيانات. يحتاج هذان الملفان النصيان إلى إدراج كل الصور بشكل فردي والتي يجب أن يستخدمها Darknet للتدريب والتحقق من الصحة عند حساب نسبة mAP%. صورة واحدة بالضبط في كل سطر. قد يكون المسار وأسماء الملفات نسبية أو مطلقة.
8. قم بتعديل ملف .cfg الخاص بك:
- قم بتعديل ملف .cfg الخاص بك باستخدام محرر النصوص.
- تأكد من أن الدفعة = 64.
- لاحظ التقسيمات. اعتمادًا على أبعاد الشبكة وحجم الذاكرة المتوفرة على وحدة معالجة الرسومات الخاصة بك، قد تحتاج إلى زيادة التقسيمات الفرعية. أفضل قيمة للاستخدام هي 1، لذا ابدأ بذلك. راجع الأسئلة الشائعة حول Darknet/YOLO إذا لم يناسبك أحد.
- لاحظ maxbatches=..... القيمة الجيدة التي يجب استخدامها عند البدء هي 2000 × عدد الفئات. في هذا المثال، لدينا 4 حيوانات، لذا 4 * 2000 = 8000. وهذا يعني أننا سنستخدم maxbatches=8000.
- ملاحظة الخطوات=..... يجب ضبط هذا على 80% و90% من الدفعات القصوى. في هذا المثال، سنستخدم الخطوات=6400,7200 نظرًا لأنه تم تعيين maxbatches على 8000.
- لاحظ العرض=... والارتفاع=..... هذه هي أبعاد الشبكة. تشرح الأسئلة الشائعة لـ Darknet/YOLO كيفية حساب الحجم الأفضل للاستخدام.
- ابحث عن كافة مثيلات السطرclasses=... وقم بتعديله بعدد الفئات في ملف .names الخاص بك. في هذا المثال، سنستخدم الفئات=4.
- ابحث عن كافة مثيلات مرشحات الخط=... في القسم [التلافيفي] قبل كل قسم [yolo]. القيمة التي يجب استخدامها هي (numberofclasses + 5) 3. وهذا يعني في هذا المثال، (4 + 5) 3 = 27. لذلك سنستخدم مرشحات = 27 على الأسطر المناسبة.
9. ابدأ التدريب:
- قم بتشغيل الأوامر التالية:
``باش
مؤتمر نزع السلاح ~/ن/الحيوانات/
كاشف الشبكة المظلمة -خريطة -dont_show تدريب الحيوانات.بيانات الحيوانات.cfg
`
كن صبوراً. سيتم حفظ أفضل الأوزان باسم Animal_best.weights. ويمكن ملاحظة تقدم التدريب من خلال عرض ملف Chart.png. راجع الأسئلة الشائعة حول Darknet/YOLO للحصول على معلمات إضافية قد ترغب في استخدامها عند تدريب شبكة جديدة.
إذا كنت تريد رؤية المزيد من التفاصيل أثناء التدريب، أضف المعلمة --verbose. على سبيل المثال:
``باش
كاشف الشبكة المظلمة -خريطة -dont_show --قطار مطول للحيوانات.بيانات الحيوانات.cfg
`
أدوات وروابط أخرى
لإدارة مشاريع Darknet/YOLO الخاصة بك، وإضافة تعليقات توضيحية إلى الصور، والتحقق من التعليقات التوضيحية، وإنشاء الملفات الضرورية للتدريب مع Darknet، راجع DarkMark.
للحصول على واجهة سطر أوامر (CLI) بديلة قوية لـ Darknet، أو لاستخدام تجانب الصور، أو لتتبع الكائنات في مقاطع الفيديو الخاصة بك، أو للحصول على واجهة برمجة تطبيقات C++ قوية يمكن استخدامها بسهولة في التطبيقات التجارية، راجع DarkHelp.
تعرف على ما إذا كانت الأسئلة الشائعة حول Darknet/YOLO يمكنها المساعدة في الإجابة على أسئلتك.
شاهد العديد من مقاطع الفيديو التعليمية والأمثلة على قناة Stéphane على YouTube
إذا كان لديك سؤال دعم أو تريد الدردشة مع مستخدمي Darknet/YOLO الآخرين، انضم إلى خادم Darknet/YOLO discord.
خريطة الطريق
آخر تحديث 2024-10-30:
مكتمل
قم بتبديل qsort() لـ std::sort() حيث يتم استخدامها أثناء التدريب (لا تزال هناك بعض العناصر الغامضة الأخرى).
تخلص من check_mistakes وgetchar() وsystem().
تحويل Darknet لاستخدام مترجم C++ (g++ على Linux، VisualStudio على Windows).
إصلاح بناء ويندوز.
إصلاح دعم بايثون.
بناء مكتبة دارك نت.
إعادة تمكين التصنيفات على التنبؤات (رمز "الأبجدية").
أعد تمكين رمز CUDA/GPU.
أعد تمكين CUDNN.
أعد تمكين نصف CUDNN.
لا تقم بترميز بنية CUDA.
معلومات إصدار CUDA أفضل.
أعد تمكين AVX.
إزالة الحلول القديمة وMakefile.
جعل OpenCV غير اختياري.
إزالة التبعية على مكتبة pthread القديمة.
إزالة STB.
أعد كتابة CMakeLists.txt لاستخدام اكتشاف CUDA الجديد.
قم بإزالة رمز "الأبجدية" القديم، واحذف أكثر من 700 صورة في البيانات/التسميات.
بناء خارج المصدر.
الحصول على إخراج رقم الإصدار أفضل.
تحسينات الأداء المتعلقة بالتدريب (مهمة مستمرة).
تحسينات الأداء المتعلقة بالاستدلال (مهمة مستمرة).
التمرير حسب المرجع حيثما أمكن ذلك.
تنظيف ملفات .hpp.
إعادة كتابة darknet.h.
لا تقم بإلقاء cv::Mat إلى void* ولكن استخدمه ككائن C++ مناسب.
أصلح أو كن متسقًا في كيفية استخدام بنية الصورة الداخلية.
إصلاح البنية لأجهزة Jetson المستندة إلى ARM.
- من غير المرجح أن يتم إصلاح أجهزة Jetson الأصلية لأنها لم تعد مدعومة من قبل NVIDIA (لا يوجد مترجم C++ 17).
- اجهزة جيتسون اورين الجديدة شغالة .
إصلاح Python API في V3.
- هناك حاجة إلى دعم أفضل لـ Python (هل يرغب أي من مطوري Python في المساعدة في هذا؟)
أهداف قصيرة المدى
قم بتبديل printf() بـ std::cout (قيد التقدم).
ابحث في دعم كاميرا Zed القديمة.
تحليل سطر الأوامر أفضل وأكثر اتساقًا (قيد التنفيذ).
أهداف منتصف المدة
قم بإزالة كافة رموز char* واستبدلها بـ std::string.
لا تخفي التحذيرات وقم بتنظيف تحذيرات المترجم (قيد التقدم).
استخدام أفضل لـ cv::Mat بدلاً من بنية الصورة المخصصة في C (قيد التقدم).
استبدل وظيفة القائمة القديمة بـ std::vector أو `