x unet
0.4.0
تنفيذ شبكة U كاملة مع الاهتمام الفعال بالإضافة إلى أحدث نتائج الأبحاث
$ pip install x-unet
import torch
from x_unet import XUnet
unet = XUnet (
dim = 64 ,
channels = 3 ,
dim_mults = ( 1 , 2 , 4 , 8 ),
nested_unet_depths = ( 7 , 4 , 2 , 1 ), # nested unet depths, from unet-squared paper
consolidate_upsample_fmaps = True , # whether to consolidate outputs from all upsample blocks, used in unet-squared paper
)
img = torch . randn ( 1 , 3 , 256 , 256 )
out = unet ( img ) # (1, 3, 256, 256)
للتصوير ثلاثي الأبعاد (الفيديو أو التصوير المقطعي/التصوير بالرنين المغناطيسي)
import torch
from x_unet import XUnet
unet = XUnet (
dim = 64 ,
frame_kernel_size = 3 , # set this to greater than 1
channels = 3 ,
dim_mults = ( 1 , 2 , 4 , 8 ),
nested_unet_depths = ( 5 , 4 , 2 , 1 ), # nested unet depths, from unet-squared paper
consolidate_upsample_fmaps = True , # whether to consolidate outputs from all upsample blocks, used in unet-squared paper
weight_standardize = True
)
video = torch . randn ( 1 , 3 , 10 , 128 , 128 ) # (batch, channels, frames, height, width)
out = unet ( video ) # (1, 3, 10, 128, 128)
@article { Ronneberger2015UNetCN ,
title = { U-Net: Convolutional Networks for Biomedical Image Segmentation } ,
author = { Olaf Ronneberger and Philipp Fischer and Thomas Brox } ,
journal = { ArXiv } ,
year = { 2015 } ,
volume = { abs/1505.04597 }
}
@article { Qin2020U2NetGD ,
title = { U2-Net: Going Deeper with Nested U-Structure for Salient Object Detection } ,
author = { Xuebin Qin and Zichen Vincent Zhang and Chenyang Huang and Masood Dehghan and Osmar R Zaiane and Martin J{"a}gersand } ,
journal = { ArXiv } ,
year = { 2020 } ,
volume = { abs/2005.09007 }
}
@inproceedings { Henry2020QueryKeyNF ,
title = { Query-Key Normalization for Transformers } ,
author = { Alex Henry and Prudhvi Raj Dachapally and Shubham Vivek Pawar and Yuxuan Chen } ,
booktitle = { FINDINGS } ,
year = { 2020 }
}
@article { Qiao2019WeightS ,
title = { Weight Standardization } ,
author = { Siyuan Qiao and Huiyu Wang and Chenxi Liu and Wei Shen and Alan Loddon Yuille } ,
journal = { ArXiv } ,
year = { 2019 } ,
volume = { abs/1903.10520 }
}
@article { Shleifer2021NormFormerIT ,
title = { NormFormer: Improved Transformer Pretraining with Extra Normalization } ,
author = { Sam Shleifer and Jason Weston and Myle Ott } ,
journal = { ArXiv } ,
year = { 2021 } ,
volume = { abs/2110.09456 }
}
@article { Sunkara2022NoMS ,
title = { No More Strided Convolutions or Pooling: A New CNN Building Block for Low-Resolution Images and Small Objects } ,
author = { Raja Sunkara and Tie Luo } ,
journal = { ArXiv } ,
year = { 2022 } ,
volume = { abs/2208.03641 }
}
@inproceedings { Woo2023ConvNeXtVC ,
title = { ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders } ,
author = { Sanghyun Woo and Shoubhik Debnath and Ronghang Hu and Xinlei Chen and Zhuang Liu and In-So Kweon and Saining Xie } ,
year = { 2023 }
}