تنفيذ نمط الاستراتيجية باستخدام LLMS.
أيضا ، يرجى الاطلاع على https://blog.blackhc.net/2022/12/llm_software_engineering/ للحصول على منظور أوسع حول سبب أهمية ذلك في المستقبل.
تضيف هذه الحزمة مجموعة Decorator llm_strategy
التي تتصل بـ LLM (مثل Openai's GPT-3) وتستخدم LLM "لتنفيذ" طرق مجردة في فئات الواجهة. يقوم بذلك عن طريق إعادة توجيه الطلبات إلى LLM وتحويل الاستجابات مرة أخرى إلى بيانات Python باستخدام Python's @dataclasses
.
يستخدم سلاسل المستندات ، والتعليقات التعليقات التوضيحية ، وأسماء الأسلوب/الوظائف كمطالبات لـ LLM ، ويمكنها تحويل النتائج تلقائيًا إلى أنواع Python (حاليًا تدعم @dataclasses
فقط). يمكنه أيضًا استخراج مخطط البيانات لإرساله إلى LLM للتفسير. على الرغم من أن حزمة llm-strategy
لا تزال تعتمد على بعض كود بيثون ، إلا أنها لديها القدرة على تقليل الحاجة إلى هذا الرمز في المستقبل باستخدام LLMs إضافية وأرخص لأتمتة تحليل البيانات المنظمة.
يتضمن الإصدار الأخير أيضًا حزمة لتتبع وجمع آثار Hyperparameter من LLMS.
هذا على سبيل المثال يسمح بتحسين التعريف. انظر الأمثلة/البحث عن تطبيق بسيط باستخدام الأدوية الجيلية.
يمكنك العثور على مثال تتبع Wandb على: https://wandb.ai/blackhc/blackboard-pagi/Reports/meta-optimization-example-trace-vmlldzo3mdmxodez؟accesstoken=p9hubfskmq1z5yj1uz7wx1idh304diiernp7pjlrjlwv3
المطالبات التي تظهر النمط باستخدام الأدوية الواقية واضحة:
T_TaskParameters = TypeVar ( "T_TaskParameters" )
T_TaskResults = TypeVar ( "T_TaskResults" )
T_Hyperparameters = TypeVar ( "T_Hyperparameters" )
class TaskRun ( GenericModel , Generic [ T_TaskParameters , T_TaskResults , T_Hyperparameters ]):
"""
The task run. This is the 'data' we use to optimize the hyperparameters.
"""
task_parameters : T_TaskParameters = Field (..., description = "The task parameters." )
hyperparameters : T_Hyperparameters = Field (
...,
description = "The hyperparameters used for the task. We optimize these." ,
)
all_chat_chains : dict = Field (..., description = "The chat chains from the task execution." )
return_value : T_TaskResults | None = Field (
..., description = "The results of the task. (None for exceptions/failure.)"
)
exception : list [ str ] | str | None = Field (..., description = "Exception that occurred during the task execution." )
class TaskReflection ( BaseModel ):
"""
The reflections on the task.
This contains the lessons we learn from each task run to come up with better
hyperparameters to try.
"""
feedback : str = Field (
...,
description = (
"Only look at the final results field. Does its content satisfy the "
"task description and task parameters? Does it contain all the relevant "
"information from the all_chains and all_prompts fields? What could be improved "
"in the results?"
),
)
evaluation : str = Field (
...,
description = (
"The evaluation of the outputs given the task. Is the output satisfying? What is wrong? What is missing?"
),
)
hyperparameter_suggestion : str = Field (
...,
description = "How we want to change the hyperparameters to improve the results. What could we try to change?" ,
)
hyperparameter_missing : str = Field (
...,
description = (
"What hyperparameters are missing to improve the results? What could "
"be changed that is not exposed via hyperparameters?"
),
)
class TaskInfo ( GenericModel , Generic [ T_TaskParameters , T_TaskResults , T_Hyperparameters ]):
"""
The task run and the reflection on the experiment.
"""
task_parameters : T_TaskParameters = Field (..., description = "The task parameters." )
hyperparameters : T_Hyperparameters = Field (
...,
description = "The hyperparameters used for the task. We optimize these." ,
)
reflection : TaskReflection = Field (..., description = "The reflection on the task." )
class OptimizationInfo ( GenericModel , Generic [ T_TaskParameters , T_TaskResults , T_Hyperparameters ]):
"""
The optimization information. This is the data we use to optimize the
hyperparameters.
"""
older_task_summary : str | None = Field (
None ,
description = (
"A summary of previous experiments and the proposed changes with "
"the goal of avoiding trying the same changes repeatedly."
),
)
task_infos : list [ TaskInfo [ T_TaskParameters , T_TaskResults , T_Hyperparameters ]] = Field (
..., description = "The most recent tasks we have run and our reflections on them."
)
best_hyperparameters : T_Hyperparameters = Field (..., description = "The best hyperparameters we have found so far." )
class OptimizationStep ( GenericModel , Generic [ T_TaskParameters , T_TaskResults , T_Hyperparameters ]):
"""
The next optimization steps. New hyperparameters we want to try experiments and new
task parameters we want to evaluate on given the previous experiments.
"""
best_hyperparameters : T_Hyperparameters = Field (
...,
description = "The best hyperparameters we have found so far given task_infos and history." ,
)
suggestion : str = Field (
...,
description = (
"The suggestions for the next experiments. What could we try to "
"change? We will try several tasks next and several sets of hyperparameters. "
"Let's think step by step."
),
)
task_parameters_suggestions : list [ T_TaskParameters ] = Field (
...,
description = "The task parameters we want to try next." ,
hint_min_items = 1 ,
hint_max_items = 4 ,
)
hyperparameter_suggestions : list [ T_Hyperparameters ] = Field (
...,
description = "The hyperparameters we want to try next." ,
hint_min_items = 1 ,
hint_max_items = 2 ,
)
class ImprovementProbability ( BaseModel ):
considerations : list [ str ] = Field (..., description = "The considerations for potential improvements." )
probability : float = Field (..., description = "The probability of improvement." )
class LLMOptimizer :
@ llm_explicit_function
@ staticmethod
def reflect_on_task_run (
language_model ,
task_run : TaskRun [ T_TaskParameters , T_TaskResults , T_Hyperparameters ],
) -> TaskReflection :
"""
Reflect on the results given the task parameters and hyperparameters.
This contains the lessons we learn from each task run to come up with better
hyperparameters to try.
"""
raise NotImplementedError ()
@ llm_explicit_function
@ staticmethod
def summarize_optimization_info (
language_model ,
optimization_info : OptimizationInfo [ T_TaskParameters , T_TaskResults , T_Hyperparameters ],
) -> str :
"""
Summarize the optimization info. We want to preserve all relevant knowledge for
improving the hyperparameters in the future. All information from previous
experiments will be forgotten except for what this summary.
"""
raise NotImplementedError ()
@ llm_explicit_function
@ staticmethod
def suggest_next_optimization_step (
language_model ,
optimization_info : OptimizationInfo [ T_TaskParameters , T_TaskResults , T_Hyperparameters ],
) -> OptimizationStep [ T_TaskParameters , T_TaskResults , T_Hyperparameters ]:
"""
Suggest the next optimization step.
"""
raise NotImplementedError ()
@ llm_explicit_function
@ staticmethod
def probability_for_improvement (
language_model ,
optimization_info : OptimizationInfo [ T_TaskParameters , T_TaskResults , T_Hyperparameters ],
) -> ImprovementProbability :
"""
Return the probability for improvement (between 0 and 1).
This is your confidence that your next optimization steps will improve the
hyperparameters given the information provided. If you think that the
information available is unlikely to lead to better hyperparameters, return 0.
If you think that the information available is very likely to lead to better
hyperparameters, return 1. Be concise.
"""
raise NotImplementedError ()
from dataclasses import dataclass
from llm_strategy import llm_strategy
from langchain . llms import OpenAI
@ llm_strategy ( OpenAI ( max_tokens = 256 ))
@ dataclass
class Customer :
key : str
first_name : str
last_name : str
birthdate : str
address : str
@ property
def age ( self ) -> int :
"""Return the current age of the customer.
This is a computed property based on `birthdate` and the current year (2022).
"""
raise NotImplementedError ()
@ dataclass
class CustomerDatabase :
customers : list [ Customer ]
def find_customer_key ( self , query : str ) -> list [ str ]:
"""Find the keys of the customers that match a natural language query best (sorted by closeness to the match).
We support semantic queries instead of SQL, so we can search for things like
"the customer that was born in 1990".
Args:
query: Natural language query
Returns:
The index of the best matching customer in the database.
"""
raise NotImplementedError ()
def load ( self ):
"""Load the customer database from a file."""
raise NotImplementedError ()
def store ( self ):
"""Store the customer database to a file."""
raise NotImplementedError ()
@ llm_strategy ( OpenAI ( max_tokens = 1024 ))
@ dataclass
class MockCustomerDatabase ( CustomerDatabase ):
def load ( self ):
self . customers = self . create_mock_customers ( 10 )
def store ( self ):
pass
@ staticmethod
def create_mock_customers ( num_customers : int = 1 ) -> list [ Customer ]:
"""
Create mock customers with believable data (our customers are world citizens).
"""
raise NotImplementedError ()
راجع أمثلة/customer_database_search.py للحصول على مثال كامل.
استنساخ المستودع أولا. ثم ، قم بتثبيت البيئة وخطافات ما قبل الالتزام مع
make install
سيتم تشغيل خط أنابيب CI/CD عند فتح طلب سحب ، أو دمج إلى MAIN ، أو عند إنشاء إصدار جديد.
لوضع اللمسات الأخيرة على إعداد النشر إلى Pypi أو Artifactory ، انظر هنا. لتفعيل الوثائق التلقائية مع MKDOCS ، انظر هنا. لتمكين تقارير تغطية الكود ، انظر هنا.
PYPI_TOKEN
عن طريق زيارة هذه الصفحة.*.*.*
.لمزيد من التفاصيل ، انظر هنا.
بدأ المستودع مع FPGMAAS/CookieCutter-Poetry.