Mineralexploration-maschinelles Lernen
Auf dieser Seite werden Ressourcen für die Mineralexploration und maschinelles Lernen aufgeführt, im Allgemeinen mit nützlichem Code und Beispielen. ML und Data Science sind ein riesiges Feld. Dies sind Ressourcen, die ich in der Praxis als nützlich und/oder interessant empfunden habe. Derzeitige Links zu einem Zweig eines Repositorys sind darauf zurückzuführen, dass ich etwas zur Verwendung geändert und als Referenz in eine Liste aufgenommen habe. Es werden auch Ressourcen für die Datenanalyse, -transformation und -visualisierung bereitgestellt, da dies den größten Teil der Arbeit ausmacht.
Vorschläge willkommen: Eröffnen Sie eine Diskussion, ein Problem oder eine Pull-Anfrage.
Inhaltsverzeichnis
- Perspektive
- Geologie
- Verarbeitung natürlicher Sprache
- Fernerkundung
- Datenqualität
- Gemeinschaft
- Cloud-Anbieter
- Domänen
- Überblick
- Webdienste
- Datenportale
- Werkzeuge
- Ontologien
- Bücher
- Datensätze
- Papiere
- Andere
- Allgemeines Interesse
Karte
Rahmenwerke
- UNCOVER-ML-Framework
- Geo-Wavelets
- ML-Vorverarbeitung
- GIS ML-Workflow
- EIS Toolkit -> Python-Bibliothek für die Kartierung der Mineralvorkommen aus dem EIS Horizon EU-Projekt
- PySpatialML -> Bibliothek, die die Vorhersage und Handhabung für maschinelles Rasterlernen erleichtert, automatisch zum Geotiff usw.
- scikit-map
- TorchGeo -> Pytorch-Bibliothek für Modelle im Fernerkundungsstil
- terratorch -> Flexibles Feinabstimmungs-Framework für Geospatial Foundation Models
- TorchSpatial
- geodl
- Geo Deep Learning -> Einfaches Deep-Learning-Framework basierend auf RGB
- AIDE: Künstliche Intelligenz zur Entwirrung von Extremen
- ExPloRA -> ExPLoRA: Parametereffizientes erweitertes Vortraining zur Anpassung von Vision Transformern unter Domänenverschiebungen
- (https://www.researchgate.net/profile/Miguel-Angel-Fernandez-Torres/publication/381917888_The_AIDE_Toolbox_Artificial_intelligence_for_d isentangling_extreme_events/links/66846648714e0b03153f38ae/The-AIDE-Toolbox-Artificial-intelligence-for-disentangling-extreme-events.pdf)
R
- CAST -> Caret-Anwendungen für räumlich-zeitliche Modelle
- geodl -> semantische Segmentierung von Geodaten mithilfe von Deep Learning auf Basis eines Faltungs-Neuronalen Netzwerks
Pipelines
- Geotargts -> Erweiterung der Ziele auf Terra und Sterne
Perspektive
Australien
- Potenzialkarten für Eisenoxid-Kupfer-Gold-Minerale
- Maschinelles Lernen für die geologische Kartierung: Algorithmen und Anwendungen -> Doktorarbeit mit Code und Daten
- Prospektive Kartierung von Ni-Co-Lateriten
- Transform 2022 Tutorial -> Beispiel für eine zufällige Gesamtstruktur
- Zinn-Wolfram
- Raumzeitliche Erkundung von Porphyr-Kupfer
- minpot-toolkit -> Beispiel einer Lab-Grenzanalyse von Hoggard et al. mit sedimentärem Kupfer
- MPM-WofE -> Kartierung des Mineralpotenzials – Beweiskraft
Explorer-Challenge
- Explorer Challenge -> OZ Minerals veranstaltet Wettbewerb mit Einführung in Data Science
Südaustralien
- Gawler_MPM -> Kobalt, Chrom, Nickel
- Geophysikalische Datenclusterung im Gawler-Kraton
- [Zenodo Data] (Automatisierte Erkennung mineralisierungsbedingter Kratonstrukturen mithilfe geophysikalischer Daten und unbeaufsichtigtem maschinellem Lernen)
Entdecken Sie SA – South Australian Department of Energy and Mining Competition
- Gewinner -> SARIG-Dateninformationen
- Caldera -> Caldera Analytics-Analyse
- IncertoData
- Butterworth und Barnett -> Butterworth und Barnett-Eintrag
- Datengesteuerte Mineralisierungskartierung
Nordamerika
Kanada
- Transferperspektive lernen
- Papier -> Porphyr-Typ-Mineralprospektionskartierung mit unausgeglichenen Daten durch vorheriges geologisches Transferlernen
Südamerika
- Maschinelles Lernen zur Klassifizierung von Erzlagerstätten anhand tektonomagmatischer Eigenschaften
Brasilien
- Mapa Preditivo -> Brasilien-Studentenprojekt
- Course_Predictive_Mapping_USP -> Kursprojekt
- Kartierung der Mineralvorkommen
- 3D-Beweisgewichte
- Geologische Komplexität SMOTE -> beinhaltet fraktale Analyse
- MPM Jurena -> Mineralprovinz Jurena
China
- MPM durch Ensemble-Lernen -> Qingchengzi Pb-Zn-Ag-Au-Polymetallbezirk China
- Mineral Prospectivity Prediction Convolutional Neural Networks -> CNN-Beispiel mit einigen Architekturen [ein Artikel dieses Autors verwendet GoogleNet]
- Vorhersage der Mineralaussichten durch CSAE
- Vorhersage der Mineralaussichten durch CAE
Sudan
- Mineralprospektivitätskartierung ML
Norwegen
- Ein auf maschinellem Lernen basierender Ansatz zur regionalen Kartierung empfindlicher glaziomariner Tone, der luftgestützte Elektromagnetik und geotechnische Daten kombiniert
Geologie
- Prädiktive geologische Karten Brasiliens -> Arbeit des brasilianischen geologischen Dienstes
- Tiefe zum Grundgestein (Bewertung räumlich aktivierter maschineller Lernansätze für die Kartierung der Tiefe zum Grundgestein)
- DL-RMD -> Eine geophysikalisch eingeschränkte Datenbank für elektromagnetische Widerstandsmodelle für Deep-Learning-Anwendungen
- Geologischer Bildklassifikator
- Geologische Kartierung im Zeitalter der künstlichen Intelligenz -> Geologische Kartierung im Zeitalter der künstlichen Intelligenz
- GeolNR -> Geologische implizite neuronale Darstellung für dreidimensionale strukturelle geologische Modellierungsanwendungen
- mapeamento_litologico_preditivo
- Kartierung globaler Druck-Temperatur-Bedingungen im lithosphärischen Mantel durch maschinell lernende Thermobarometrie
- Neural Rock Typing
- West Musgraves Geology Uncertainty -> Unsicherheitskartenvorhersage mit Entropieanalyse: sehr nützlich
- Transformator zur Nichtstationaritätsminderung
- Zusammenarbeit -> Notizbuch
- Grundgestein vs. Sediment
- autoencoders_remotesensing
- Papier -> Fernerkundungsrahmen für geologische Kartierung über gestapelte Autoencoder und Clustering
Trainingsdaten
- Into the Noddyverse -> ein riesiger Datenspeicher mit geologischen 3D-Modellen für maschinelles Lernen und Inversionsanwendungen
- Zenondo-Repository
- Webseite
Lithologie
- Deep-Learning-Lithologie
- Gesteinsprotolith-Prädiktor
- SA Geology Lithology Vorhersagen
- Automatisierte Bohrlochprotokollkorrelation
- dawson-facies-2022 -> Transferlernen für geologische Bilder
- Papier -> Einfluss der Datensatzgröße und der Architektur eines Faltungs-Neuronalen Netzwerks auf das Transferlernen für die Klassifizierung von Karbonatgesteinen
- Litho-Klassifizierung -> Klassifizierung vulkanischer Fazies mithilfe von Random Forest
- Ansatz für maschinelles Lernen mit mehreren Ansichten von Ensembles für die 3D-Modellierung unter Verwendung geologischer und geophysikalischer Daten
- SedNet
Bohren
- Heterogenes Bohren – Nicta/Data61-Projektbericht zur Betrachtung der Modellierung unter Verwendung von Bohrlöchern, die nicht weit genug gehen
- corel -> Intelligentes Computer-Vision-Modell, das Fazies identifiziert und Gesteinstypen auf Kernbildern durchführt
Paläotäler
- Sub3DNet1.0: ein Deep-Learning-Modell für die regionale 3D-Untergrundstrukturkartierung
Stratigraphie
- Predicatops -> Stratigraphische Vorhersage für Kohlenwasserstoffe
- stratal-geometries -> Vorhersage stratigraphischer Geometrien aus unterirdischen Bohrlochprotokollen
Strukturell
- APGS -> Strukturgeologiepaket
- Bewertung von Plattenrekonstruktionsmodellen mithilfe von Plattenantriebskraft-Konsistenztests -> Jupyter-Notizbuch und Daten
- gplately
- [Strukturgeologie-Kochbuch](https://github.com/gcmatos/structural-geology-cookbook]
- GEOMAPLEARN 1.0 -> Erkennung geologischer Strukturen aus geologischen Karten mit maschinellem Lernen
- Lineament-Lernen -> Fehlervorhersage und -kartierung durch potenzielles Feld-Deep-Learning und Clustering
- LitMod3D -> 3D integrierte geophysikalisch-petrologische interaktive Modellierung der Lithosphäre und des darunter liegenden oberen Mantels
- andere
Simulation
- GebPy -> Generierung geologischer Daten für Gesteine und Mineralien
- OpenGeoSys -> Entwicklung numerischer Methoden zur Simulation thermo-hydro-mechanisch-chemischer (THMC) Prozesse in porösen und gebrochenen Medien
- Stratigraphics.jl -> Erstellen einer 3D-Stratigraphie aus 2D-geostatistischen Prozessen
Geodynamik
- Badlands -> Becken- und Landschaftsdynamik
- CitcomS -> Finite-Elemente-Code zur Lösung komprimierbarer thermochemischer Konvektionsprobleme im Zusammenhang mit dem Erdmantel.
- LaMEM -> Simulation verschiedener thermomechanischer geodynamischer Prozesse wie der Wechselwirkung zwischen Mantel und Lithosphäre
- PTatin3D -> Untersuchung langfristiger Prozesse, die für die Geodynamik relevant sind [ursprüngliche Motivation: Toolkit zur Untersuchung hochauflösender, dreidimensionaler Modelle der lithosphärischen Verformung]
- Unterwelt -> Finite-Elemente-Modellierung der Geodynamik
Geophysik
Foundation-Modelle
- Cross-Domain Foundation Model Adaption: Bahnbrechende Computer-Vision-Modelle für die geophysikalische Datenanalyse -> einige Codes folgen noch
- Seismisches Fundamentmodell -> „ein Deep-Learning-Modell der neuen Generation in der Geophysik“
Australien
Regolithtiefe
- Regolithtiefe -> Modell
- Vollständiges radiometrisches Gitter Australiens mit modellierter Füllung
AEM-Interpolation
- Hochauflösende Leitfähigkeitskartierung mittels regionaler AEM-Untersuchung
Elektromagnetik
- TEM-NLnet: Ein Deep Denoising-Netzwerk für transiente elektromagnetische Signale mit Noise Learning
Umkehrung
- Maschinelles Lernen und geophysikalische Inversion -> rekonstruieren Sie den Artikel von Y. Kim und N. Nakata (The Leading Edge, Band 37, Ausgabe 12, Dezember 2018)
Euler-Entfaltung
- https://legacy.fatiando.org/gallery/gravmag/euler_moving_window.html
- Endlich eine Mundharmonika-Version? https://hackmd.io/@fatiando/development-calls-2024?utm_source=preview-mode&utm_medium=rec
- https://notebook.community/joferkington/tutorials/1404_Euler_deconvolution/euler-deconvolution-examples
- https://github.com/ffigura/Euler-deconvolution-plateau
Schwerkraft
- [Wiederherstellung des 3D-Kellerreliefs mithilfe von Schwerkraftdaten durch Faltungs-Neuronale Netze]
- Stabile Fortsetzung des Gravitationspotentialfeldes nach unten, implementiert durch Deep Learning
- Schnelle Bildgebung für 3D-Dichtestrukturen durch maschinellen Lernansatz
Magnetik
- Hochauflösende aeromagnetische Karte durch Adapted-SRGAN
- MagImage2Geo3D
Seismisch
- StorSeismic -> Ein Ansatz, um ein neuronales Netzwerk vorab zu trainieren, um seismische Datenmerkmale zu speichern
- PINNtomo -> Seismische Tomographie unter Verwendung physikinformierter neuronaler Netze
Seismologie
- obspy -> Framework für die seismologische Verarbeitung
Petrophysik
- ML4Rocks -> Einige Intro-Arbeiten
Tektonik
- Erkennen Sie die Ablösung der subduzierenden Platte in einer alten Subduktionszone mithilfe von maschinellem Lernen -> Notizbuch
- Colab-Notizbuch -> Google Colab-Eingabedatei für Benchmark-Ergebnisse der ML-SEISMIC-Veröffentlichung
- Die Kraft des maschinellen Lernens in der Geodynamik freisetzen
- Diplomarbeit im Zusammenhang mit Auszeichnung
- Physikalisch-informierte neuronale Netze zur Fehlerschlupfsimulation mit Geschwindigkeits- und Zustandsreibungsgesetz
- Simulation und Reibungsparameterschätzung bei langsamen Schlupfereignissen
- Papier -> Physikinformiertes Deep Learning zur Schätzung der räumlichen Verteilung von Reibungsparametern in Regionen mit langsamem Gleiten
Geochemie
- CODAinPractice -> Kompositionsdatenanalyse in der Praxis
- GeoCoDa
- DAN-GRF -> Tiefes Autoencoder-Netzwerk, verbunden mit einem geografischen Zufallswald zur räumlich bewussten Erkennung geochemischer Anomalien
- Dash Geochemical Prospection -> Web-App zur Klassifizierung von Bachsedimenten mit K-Mitteln
- Verbesserung der maschinellen Lernthermobarometrie für Clinopyroxen-haltige Magmen
- Papier -> Enhancing-ML-Thermobarometry-for-Clinopyroxene-Lager-Magmen
- Zirkonfruchtbarkeitsmodelle -> Entscheidungsbäume zur Vorhersage des fruchtbaren Zirkons aus Porphyr-Kupfer-Lagerstätten
- Werkzeug für maschinelles Lernen von Zirkonspurenelementen zur Vorhersage der Art und Größe der Porphyrlagerstätte
- geology_class0 -> Ein maschineller Lernansatz zur Unterscheidung magmatischer Gesteine und Erzvorkommen anhand von Zirkon-Spurenelementen
- Papier
- Demo-Anwendung
- https://colab.research.google.com/drive/1-bOZgG6Nxt2Rp1ueO1SYmzIqCRiyyYcT
- GeochemPrint
- Globale Geochemie
- ICBMS Jacobina -> Analyse der Pyritchemie einer Goldlagerstätte
- Interpretation der Spurenelementchemie von Zirkonen aus Bor und Cukaru Peki: konventioneller Ansatz und zufällige Waldklassifizierung
- Indicator_minerals -> Kann PCA die Geschichte des Ursprungs von Turmalin erzählen?
- Journal of Geochemical Exploration – Manifold
- LewisML -> Analyse der Lewis-Formation
- Glimmer -> Chemische Zusammensetzung, in glänzend
- Multivariate statistische Analyse und maßgeschneiderte Abweichungsnetzwerkmodellierung zur geochemischen Anomalieerkennung von Seltenerdelementen
- Prospektivitätskartierung von Seltenerdelementen durch geochemische Datenanalyse -> Prospektivitätskartierung von Seltenerdelementen durch geochemische Datenanalyse
- QMineral Modeller -> Virtueller Assistent für Mineralchemie des brasilianischen geologischen Dienstes
- Weltliche Veränderungen im Auftreten der Subduktion während des Archäikums -> Zenodo-Codearchiv
- [Papier] https://www.researchgate.net/publication/380289934_Secular_Changes_in_the_Occurrence_of_Subduction_During_the_ArcheanEin maschineller Lernansatz zur Unterscheidung von magmatischen Gesteinen und Erzvorkommen durch Zirkonspurenelemente
Kriging
- DKNN: Deep-Kriging-Neuronales Netzwerk für interpretierbare Geodateninterpolation
Verarbeitung natürlicher Sprache
- Textextraktion -> Textextraktion aus Dokumenten: kostenpflichtiges ML als Service, funktioniert aber sehr gut, kann Tabellen effizient extrahieren
- Großformat -> Großformatversion
- NASA-Konzept-Tagging -> Keyword-Vorhersage
- API -> API-Webdienst
- Präsentation
- Datenextraktor für Petrographieberichte
- SA-Explorationsthemenmodellierung -> Themenmodellierung aus Explorationsberichten
- Stratigraph
- Geokorpus
- Portugiesisches BERT
- BERT CWS
- Automatisierte Extraktion der Bohrlochergebnisse eines Bergbauunternehmens
Worteinbettungen
- Geowissenschaftliche Sprachmodelle -> Verarbeitung von Code-Pipeline und Modellen [Glove, BERT], umgeschult auf geowissenschaftlichen Dokumenten aus Kanada
- Datensätze -> Daten zur Unterstützung von Modellen
- Papier -> Geowissenschaftliche Sprachmodelle und ihre intrinsische Bewertung
- Papier -> Anwendungen der Verarbeitung natürlicher Sprache auf geowissenschaftliche Textdaten und Prospektivitätsmodellierung
- GeoVec -> Worteinbettungsmodell, trainiert anhand von 300.000 geowissenschaftlichen Arbeiten
- GeoVec-Modell -> OSF-Speicher für GeoVec-Modell
- Papier
- GeoVecto Litho -> Interpolation von 3D-Modellen aus Worteinbettungen
- GeoVEC Playground -> Arbeiten mit dem Padarian GeoVec-Handschuhworteinbettungsmodell
- GloVe -> Standford-Bibliothek zur Erstellung von Worteinbettungen
- gloVE Python Glove, Glove-Python unter Windows höchst problematisch: Hier wird die Binärversion für Windows installiert:
- Fäustlinge -> Im Speicher vektorisierte Handschuhimplementierung
- PetroVec -> Portugiesische Worteinbettungen für die Öl- und Gasindustrie: Entwicklung und Bewertung
- WordembeddingsOG -> Portugiesische Worteinbettungen für Öl und Gas
- Portugiesische Worteinbettungen
- Spanische Worteinbettungen
- Mehrsprachige Ausrichtung
Anerkennung benannter Entitäten
- Geo-NER-Modell -> Erkennung benannter Entitäten
- GeoBERT – Hugging Face Repo für Model in
- [Papier]https://www.researchgate.net/publication/359186219_Few-shot_learning_for_name_entity_recognition_in_geological_text_based_on_GeoBERT
- INDUS -> Auf die Wissenschaft zugeschnittene LLM-Suite der NASA
- So finden Sie mit Amazon Comprehend wichtige geowissenschaftliche Begriffe im Text, ohne NLP zu beherrschen
- OzRock – OzRock: Ein gekennzeichneter Datensatz zur Entitätserkennung im geologischen Bereich (Mineralienexploration).
Ontologie
- GAKG -> Ein multimodaler Geowissenschafts-Wissensgraph (Chinesisch)
- GeoERE-Net -> Verstehen geologischer Berichte basierend auf Wissensgraphen mithilfe eines Deep-Learning-Ansatzes
- GeoFault-Ontologie
- geosim -> Semantisch ausgelöste qualitative Simulation eines geologischen Prozesses
- [https://www.duo.uio.no/handle/10852/111467](Knowledge Modeling for Digital Geology) -> Doktorarbeit mit zwei Arbeiten
- SIRIUS GeoAnnotator -> Website-Beispiel von oben
- Ontologie CWS
- Stratigraphischer Wissensgraph (StraKG)
Große Sprachmodelle
- Großes Sprachmodell für Geowissenschaften
- Aufsatz „Learning Foundation Language Models for Geoscience Knowledge Understanding and Utilization“.
- GeoGalactica -> Ein größeres grundlegendes Sprachmodell in den Geowissenschaften
- GeoChat -> fundiertes Large Vision Language Model für die Fernerkundung
- LAGDAL -> LLM Zuordnung geologischer Karteninformationen zu Standortexperimenten
Chatbots
- GeoGPT -> Projekt der Deep Time Digital Earth Research Group aus China
Fernerkundung
- CNN Sentinel -> Übersicht über die Landnutzungsklassifizierung aus Satellitendaten mit CNNs basierend auf einem offenen Datensatz
- DEA-Notizbücher -> Beispiel für skalierbares maschinelles Lernen, aber viele nützliche Dinge hier
- EASI-Kochbuch-Notizbücher -> Einführungen in die CSIRO Earth Analytics-Plattform für ODC-Analysen
- DS_UNet -> Unet vereint Sentinel-1 Synthetic Aperture Radar (SAR) und Sentinel-2 Multispectral Imager
- Multi-Pretext-maskierter Autoencoder (MP-MAE)
- Daten
- segment-geospatial -> Alles für Geodatenzwecke segmentieren
- SamGIS -> Alles segmentieren, was auf GIS angewendet wird
- SatMAE++ -> Rethinking Transformers Vorschulung für multispektrale Satellitenbilder
- grid-mae -> Untersuchen Sie die Verwendung von Multiskalengittern in einem Vision Transformer Masked Autoencoder
- ScaleMae
- CIMAE -> CIMAE – Kanalunabhängiger maskierter Autoencoder
- fork -> um ihm den Namen als Referenz zu geben
- [Selbstüberwachtes Repräsentationslernen für die Fernerkundung] -> Die Masterarbeit umfasst das oben Genannte und Vergleiche mehrerer Modelle
- U Scheune
- Erdnetze
- GeoTorchAI -> GeoTorchAI: Ein raumzeitliches Deep-Learning-Framework
- [pytorcheo](https://github.com/earthpulse/pytorchEO -> Deep Learning für Erdbeobachtungsanwendungen und -forschung
- AiTLAS -> eine Open-Source-Benchmark-Suite zur Bewertung modernster Deep-Learning-Ansätze für die Bildklassifizierung in der Erdbeobachtung
- Segmentation Gym -> Gym ist als „One-Stop-Shop“ für die Bildsegmentierung auf „ND“ konzipiert – einer beliebigen Anzahl zusammenfallender Bänder in einem multispektralen Bild
- deep_learning_alteration_zones
- Fantastische Sammlung von Bandverhältnissen im Bergbau -> Sammlung einfacher Bandverhältnisanwendungen zur Hervorhebung verschiedener Mineralien
- Fantastische Fernerkundungsfundamentmodelle
- Clay -> Ein Open-Source-KI-Modell und eine Schnittstelle für die Erde
- IBM-NASA-GEOSPATIAL Prithvi
- Bildsegmentierung durch Feinabstimmung des Grundmodells -> Für Prithvi
- AM-RADIO: Agglomerative Vision Foundation-Modell
- Papier -> - Reduzieren Sie alle Domänen auf eine
- RemoteCLIP -> Ein Vision Language Foundation-Modell für die Fernerkundung
- SpectralGPT
- zenodo) -> Fernerkundungsgrundlagenmodell, angepasst an Spektraldaten
Verarbeitung
- ASTER-Konvertierung -> Konvertierung von ASTER hd5 in Geotiff NASA Github
- HLS-Datenressourcen -> Harmonisiertes Landsat-Sentinel-Wrangling
- Sarsen -> Xarray-basierte SAR-Bildverarbeitung und -korrektur
- openEO -> openEO entwickelt eine offene API, um R, Python, JavaScript und andere Clients mit EO-Cloud-Backends zu verbinden
Spektrale Entmischung
- Konventionelle-zu-Transformator-für-Hyperspectral-Image-Classification-Survey-2024
- Überprüfung des hyperspektralen Deep Learning
- Hyperspektrale Autoencoder
- Deeplearn HSI
- 3DCAE-Hyperspektral-Klassifizierung
- DeHIC
- Rev-Net
- Papier -> Ein reversibles generatives Netzwerk für hyperspektrale Entmischung mit spektraler Variabilität
- Pysptools -> verfügt auch über nützliche heuristische Algorithmen
- Spektralpython
- Spektraldatensatz RockSL -> Spektraldatensatz öffnen
- Entmischung
Hyperspektral
- CasFormer: Kaskadierte Transformatoren für fusionsfähige rechnergestützte hyperspektrale Bildgebung
- Spektrale Normalisierung für Keras
- S^2HM^2 -> S2HM2: Ein spektralräumliches hierarchisches maskiertes Modellierungsframework für selbstüberwachtes Merkmalslernen und Klassifizierung großräumiger hyperspektraler Bilder
Visualisierung
- Tiefgreifende Farbkartenextraktion aus Visualisierungen
- Semantische Segmentierung zur Extraktion historischer Störungen im Tagebau aus topografischen Karten -> Beispiel für Kohlebergwerke
- Internationale chronostratigraphische Farbcodes -> RGB-Codes und andere in Tabellenkalkulations- und anderen Formaten
- LithClass -> USGS-Version der Lithologie-Farbcodes
- Farbversion
- SeisWiz -> Leichter Python-SEG-Y-Viewer
Textur
- Klassifizierung der Mineraltextur mithilfe tiefer Faltungs-Neuronalnetze: Eine Anwendung auf Zirkone aus Porphyr-Kupfer-Lagerstätten
Simulation
- Intelligent Prospector -> Sequentielle Datenerfassungsplanung
- Zenodo
Geometrie
- Deep Angle -> Schnelle Berechnung von Kontaktwinkeln in Tomographiebildern mittels Deep Learning
Andere
- Netzwerkanalyse mineralogischer Systeme
- Daten -> Daten aus Papier hier
- Geoanalytik und maschinelles Lernen
- Maschinelles Lernen unter der Oberfläche
- ML Geowissenschaften
- Seien Sie ein geowissenschaftlicher Detektiv
- Earth ML -> Einige grundlegende Tutorials zu PyData-Ansätzen
- GeoMLA -> Algorithmen für maschinelles Lernen für räumliche und raumzeitliche Daten
Plattformen
Führer
- Geospatial CLI – Liste der Geospatial-Befehlszeilentools
- Satellitenbild-Deep-Learning
- Erdbeobachtung
- Künstliche Intelligenz der Erde
- Open Source GIS -> Umfassender Überblick über das Ökosystem
Datenqualität
- Geowissenschaftliche Datenqualität für maschinelles Lernen -> Geowissenschaftliche Datenqualität für maschinelles Lernen
- Australische Schwerkraftdaten -> Übersicht und Analyse der Schwerkraftstationsdaten
- Geodiff -> Vergleich von Vektordaten
- Redflag -> Analyse der Daten und Übersicht zur Erkennung von Problemen
Maschinelles Lernen
- Dask-ml -> Verteilte Versionen einiger gängiger ML-Algorithmen
- geospatial-rf -> Funktionen und Wrapper zur Unterstützung bei zufälligen Gesamtstrukturanwendungen in einem räumlichen Kontext
- Geospatial-ml -> Mehrere gängige Pakete gleichzeitig installieren
Latentraum
- Verschachtelte Fusion
- Papier -> Nested Fusion: Dimensionsreduktion und latente Strukturanalyse mehrskaliger verschachtelter Daten für M2020 PIXL RGBU- und XRF-Daten
Metriken
- Ergebnisse -> Verifizierung und Bewertung von Modellen und Vorhersagen mit xarray
Wahrscheinlichkeit
- NG Boost -> probabilistische Regression
- Probabilistisches ML
- Absacken von PU mit BO -> Positives unbeschriftetes Absacken mit Bayes'scher Optimierung
Clustering
Selbstorganisierende Karten
- GisSOM -> Geodatenzentrierte selbstorganisierende Karten vom finnischen geologischen Dienst
- SimpSOM -> Selbstorganisierende Karten
Andere
Bayesianisch
- Bayseg -> Räumliche Segmentierung
Erklärbarkeit
- InterpretML -> Modelle tabellarischer Daten interpretieren
- InterpretML -> Community-Ergänzung
Tiefes Lernen
- Deep Colormap Extraction -> Versuch, eine Datenskala aus Bildern zu extrahieren
- Extrahieren und klassifizieren Sie Bilder aus geowissenschaftlichen Dokumenten
Daten
- Xbatcher -> Xarray-basiertes Datenlesen für Deep Learning
- Cloud-native Datenlader für maschinelles Lernen mit Zarr und Xarray
- zen3geo -> Datenwissenschaft im Xbatcher-Stil mit Pytorch
Erklärbarkeit
- Werte gestalten
- Weight Watcher -> Analysieren Sie, wie gut Netzwerke trainiert sind
- Weightwatcher.ai
- Weightwatcher-ai.com -> Professionelle Webversion
Selbstüberwachtes Lernen
- Selbstüberwacht -> Pytorch-Lightning-Implementierungen mehrerer Algorithmen
- Simclr
- Tolles selbstüberwachtes Lernen -> Kuratierte Liste
Hyperparameter
- Hyperopt
- TPOT Automatisiertes ML
Codierungsumgebungen
- DEA-Sandbox
- Würfel in einer Box
Gemeinschaft
- Software Underground – Gemeinschaft von Menschen, die daran interessiert sind, die Schnittstelle zwischen Untergrund und Code zu erforschen
- Chat-Anmeldung – SWUNG-Community-Chat-Anmeldung
- Mattermost – Community-Chat-Dienst
- Alter Slack-Kanal (veraltet, siehe Mattermost oben)
- Geowissenschaftliche Open-Source-Anbindung
- Videos
- Fantastische offene Geowissenschaften [Anmerkung: Öl- und Gasvoreingenommenheit]
- Transform 2021 Hacking-Beispiele
- Segysak 2021 Tutorial
- T21 Seismisches Notizbuch
- Praktische Seismik mit Python
- Transform 2021 Simpeg
- Pangeo
- Digital Earth Australien
- Open Source Geospatial Foundation
- OSGeoLive -> Bootfähige DVD/USB mit vielen Open-Source-Geodatensoftware
- ASEG -> Videos von Geowissenschaftlern der Australia Society of Exploration
- KI für geologische Modellierung und Kartierung -> Videos vom Konferenztag
- Konferenz
Cloud-Anbieter
AWS
- ec2 Spot Labs -> Vereinfacht automatisch arbeitende Sith-Spot-Instanzen
- Sagemaker Geospatial ML
- Sagemaker -> ML Managed Service
- SDK
- Entrypoint-Dienstprogramme
- Werkstatt 101
- Schulungs-Toolkit
Charge
- Shepard -> Automatisierte Cloud-Bildungseinrichtung von AWS Batch Pipelines: Das ist großartig
Pakete
- Mlmax – Schnelle Bibliothek starten
- Kleinigkeit
- Pyutil
Allgemein
- Deep-Learning-Container
- Loguru -> Protokollierungsbibliothek
- AWS GDAL Robot -> Lambda und Stapelverarbeitung von Geotiffs
- Serverlose seismische Verarbeitung
- LIthops -> Multi-Cloud-Framework für verteiltes Computing
Übersichten
Domänen
- Geologie
- Geologische Zeitalter
- Lithologie
- Stratigraphie
- Geochemie
- Geophysik
- Fernerkundung
Webdienste
Bei der Auflistung wird davon ausgegangen, dass es sich im Allgemeinen um Daten handelt. Bei nur Bildern wie WMS wird dies angegeben.
Welt
- Kritische Mineralien und Vorkommen
Australien
- AusGIN
- Geowissenschaften Australien
- Mineralisches Potenzial -> WMS
- Geoscience Australia Katalogservice
Geologie
- AUSLAMP - > Tennant Creek - MtIsa
- Feldgeologie
- Tiefe Lithosphäre -> Mineralpotenzial der tiefen Lithosphäre
- Geochronologie -> Geochronologie
- Geologische Provinzen
- WMS -> WMS-Bild
- EGGS -> Schätzungen geologischer und geophysikalischer Oberflächen
- Proterozoische alkalische Gesteine – Proterozoische alkalische Gesteine, Datensatz WFS {hat auch WMS}
- Känozoikum
- Mesozoikum
- Paläozoikum
- Archaisch
- Stratigraphie -> Stratigraphische Einheiten
Geophysik
- Geophysikalische Untersuchungen
- Seismische Untersuchungen -> Seismische Untersuchungen an Land
- Magnetotellurik -> Nordaustralien AUSLAMP-Stationen
Andere
- Ni-Cu-PEGE -> Intrusion beherbergte Nickel-Kupfer-PGE-Lagerstätten
- EFTF-Gebiet -> Erkundung der zukünftigen Gebiete
- Temperatur -> Interpretierte Temperatur
- DEA -> Digital Earth Australia
- Landbedeckung
- Gewässer
- Stückliste -> Büro für Meteorologie und Hydrogeochemie
New South Wales
- NSW
- WCS
- WFS-Mineralbohrlöcher
- WFS Erdölbohrlöcher
- WFS Kohlebohrlöcher
- Seismisch -> Seismisch und andere
Queensland
- Queensland
- Geowissenschaftlich -> Geophysik- und Berichtsindex
- Geologie
- Regional
- Zustand
- Mietshäuser
- Straßen
- Wasserlauf
Südaustralien
- SARIG
- Bohrlöcher
- Geologie
- Geophysik
- Perspektive
- Mineralien und Minen
- Fernerkundung
- Seismisch
- Mietshäuser
Northern Territory
- NTGS -> Northern Territory Geological Survey
Tasmanien
- Tasmanien WFS
- Tasmanien REST
- Bohrlöcher
Victoria
Westaustralien
Neuseeland
- GNS -> Liste der Webdienste
Südamerika
Brasilien
- Geoportal Brasilien
- Brasilien CPRM
Peru
- Ingement
- Mineralische Vorkommen
- Umweltfreundlich
Mexiko
Argentinien
Kolumbien
- Ausruhen
- Einzahlungen 2018
Uruguay
Andere
- SIG Andes -> Geologie der Anden
Europa
EGDI -> EGDI-Mineralien
Schweden
- SGU Magnetics WMS
- SGU Uran
- Geophysik-Metadaten
Finnland
- GTK -> Geologischer Dienst Finnlands
- Finnland
- Grundgesteinsgeologie
- Geophysik
- Bodenvermessungen
- Arktische Mineralien -> Arktische 1M Mineralvorkommen
Dänemark
Portugal
- Portugals Geologie
- Mineralvorkommen -> WMS
- Städte und Gemeinden
Spanien
- Spanien
- Geologie -> 200K
- 1M -> 1M
- 50.000 -> 50.000
- IGME-Geode
- Geophysik
- Kupfer - Kupfer
- GeoFPI - > Geologie und Mineralien Südportugiesische Zone
- Wasser
Ukraine
- Geoinform -> [derzeit ausgesetzt]
Irland
- Ausruhen
- Mineralstandorte
Großbritannien
- BGS -> British Geological Survey
- Geoindex -> Beispiel für Mineralvorkommen
- Rest -> BGS Rest Services & Inspire 625
Deutschland
Tschechische Republik
Slowakei
Ungarn
Rumänien
- Nur IGR -> WMS
- IGR-Minen -> nur WMS
Polen
- Restbeispiel -> Viele weitere Mapserver
Nordamerika
Kanada
- Québec
- NWT
- Ausruhen
- Referenzen
USA
- USGS World Mineral
- USGS MRDS
- Minnesota
Asien
- China -> WMS-Minerallagerstätten-Wap
- Erzfeld -> Mineralvorkommenspunkte
- India Mineral -> WMS
- Indien Geophysik
Afrika
- Afrika-Geoportal -> Rastdienste
- Afrika 10M -> Afrika 10M Mineralvorkommen https://pubs.usgs.gov/of/2005/1294/e/OF05-1294-E.pdf
- IPIS Artisanal Mines -> Es gibt auch eine WMS-Version
- Github
- Uganda -> GMIS WMS
Allgemein
- Mineral Exploration Web Services -> QGIS-Plugin mit Zugriff auf viele relevante Webdienste
Andere
- Straßenkarte öffnen -> nützlicher allgemeiner Kacheldienst
APIs
- Open Data API -> GSQ Open Data Portal API
- CORE -> Offene Forschungstexte
- API Notebook -> Beispiel und Funktionen
- TEILEN -> Open Science API
- USGS-Veröffentlichungen
- KREUZVERWEIS
- xDD -> ehemaliges GeoDeepDive
- ADEPT -> GUI zu xDD zum Durchsuchen von 15 Millionen gesammelten Papieren
- OpenAlex
- API
- Diophila-Python-Bibliothek
- Python-Bibliothek
- Makrostrat
- OpenMinData -> erleichtert das Abfragen und Abrufen von Daten zu Mineralien und Geomaterialien über die Mindat-API
Datenportale
Welt
- Zusammenarbeit mit Erdmodellen -> Zugriff auf verschiedene Erdmodelle, Visualisierungstools für die Modellvorschau, Möglichkeiten zum Extrahieren von Modelldaten/Metadaten und Zugriff auf die beigesteuerte Verarbeitungssoftware und Skripte.
- ISC-Bulletin -> Suche nach Erdbebenherdmechanismen
- [Magnetics Information Consortium[(https://www2.earthref.org/MagIC/search) -> paläomagnetisch, geomagnetisch, gesteinsmagnetisch
Australien
Geowissenschaften Australien
- Geoscience Australia-Datenkatalog
- AusAEM
- Geoscience Australia-Portal
- Portal „Exploring for the Future“ -> Geoscience Australia-Webportal mit Download-Informationen
- AusAEM
- AusLAMP
- Geochronologie und Isotope
- Hydrogeologie-Einzugsgebiete -> Suche nach der Ebene „Einzugsgebiete“.
- Initiative zur Kartierung kritischer Mineralien
- Australische stratigraphische Einheiten
- Stratigraphische Einheiten des australischen Bohrlochs -> Zusammenstellung für Grundwasser von Sedimenteinheiten
- Geoscience Australia Geophysics-Thredds -> OpendDAP- und https-Zugriff
- MORPH gdb -> Bohrdaten von Officer Musgrave
CSIRO
- CSIRO-Datenzugriffsportal
- Regolithtiefe
- TWI -> Topografischer Nässeindex
- ASTER Geoscience Maps -> Website
- FTP -> CSIRO-FTP-Site
- ASTER Maps-Notizen -> Notizen zu den oben genannten Punkten
AuScope
- 3D-Geologie -> Modelle aus mehreren Bereichen
Seeschwalbe
- Verbesserte Kovariaten der nackten Erde für die Boden- und lithologische Modellierung
Büro für Meteorologie
- Grundwasserforscher -> Büro für Meteorologie
Grundlegende räumliche Daten
Südaustralien
- SARIG -> Geodatenkartenbasierte Suche des South Australia Geological Survey
- SARIG-Katalog -> Datenkatalog
- 3D-Modelle
- Datenpakete – Jährliche Aktualisierung
- s3-Berichte -> Berichte und Textversionen im S3-Bucket mit Webschnittstelle)
- Berichte
- Seismisch
- Seismische Downloads -> Eine Seite mit Links
Northern Territory
- STRIKE -> Northern Territory Geological Survey
- GEMIS
- McArthur-Becken -> 3D-Modell
- Geophysikalische Untersuchungen
- Geophysik -> Referenz
- Bohren und Geochemie -> Referenz
Queensland
- Geologische Untersuchung von Queensland
- Geophysikalische Untersuchungen
- Bohren und Geochemie
Westaustralien
- GEOVIEW -> Western Australia Geological Survey
- DMIRS -> DMIRS Daten- und Softwarezentrum
- Download-URLs -> Datensatz der Download-Links
- Bohren und Geochemie
- Paket herunterladen - Verbesserung?
- Geochemie
- Erdölbrunnen mit Tiefen
- Daten-WA-Teilmenge
NSW
- MINVIEW -> New South Wales Geological Survey
- DiGS -> Publikationen und Geotechnische Sammlungen
Tasmanien
- MRT
- MRT-Karten -> Webkarte
Victoria
- Erdressourcen
- GeoVIC -> Webmaps erfordert eine Registrierung, um nützlicher zu sein
Neuseeland
- Explorationsdatenbank -> Online
- GERM -> Geologische Ressourcenkarte von Neuseeland
- Geologie -> Webkarte
- https://maps.gns.cri.nz/gns/wfs
Südamerika
Brasilien
- CPRM -> Geologische Untersuchung Brasiliens
- Downloads -> Downloads des Brazil Geological Survey
- Rigeo -> Institutionelles Repository für Geowissenschaften
Peru
- Ingemmet GeoPROMINE -> Geologische Untersuchung von Peru
- GeoMAPE
Mexiko
Argentinien
- SIGAM -> Argentinischer geologischer Dienst
- SIGAM
Kolumbien
Uruguay
Chile
Europa
- EGDI -> Europa Geowissenschaften
- WFS
- Prominieren
- Inspirieren -> Geoportal inspirieren
Dänemark
Finnland
- Mineralien4EU
- GTK -> Geologischer Dienst Finnlands
- Geochemische Karten -> nur PDF!
Schweden
- SGU -> Schwedischer Geologischer Dienst
Spanien
- IGME -> Spanischer geologischer Dienst
Portugal
- Geoportal
- Mineralvorkommen
Irland
- GSI -> Geological Survey of Ireland
- GSI – Kartenbetrachter
- Goldmine -> Karten- und Dokumentensuche
- data.gov.ie -> Nationale Portalansicht
- isde -> Irish Spatial Data Exchange
Norwegen
- NGU -> Geologische Untersuchung Norwegens
- Datenbank -> Nachschlagen von Mineralressourcen und Stratigraphie
- Github
- API
- Geoporta -> Geophysik
- GEONORGE -> Datenkatalog mit Download
Großbritannien
- Großbritannien
- Kartenserver
- Github
Ukraine
Russland
- Russisches Geologisches Forschungsinstitut -> Derzeit nicht zugänglich
- RGU -> GIS-Projekt der Lagerstätten
Deutschland
- Geoportal
- Geokarte -> M
- Atom -> Atom-Datenfeed
- GDI -> 3D-Modelle Deutschland
Frankreich
- Infoterre -> Französischer geologischer Dienst
Kroatien
- Geoportal -> Geologische Untersuchung Kroatiens
- Geologie
Tschechische Republik
- GS -> Tschechischer Geologischer Dienst
Slowenien
Slowakei
- Datenkatalog
- Geoportapi-API
Ungarn
Rumänien
- IGR -> Rumänischer Geologischer Dienst
- Bodenschätze
Polen
Vereinigtes Königreich
- Britische Onshore-Geophysikalische Bibliothek
- OS Data Hub Britische Geologie
- Geologie 625
Nordamerika
Kanada
- Natürliche Ressourcen Kanada
- Github
- Geowissenschaftliches Datenrepository -> DAP-Server
- Bergbau-Webkartenportal
- DEM -> Kanada DEM im COG-Format
- CDEM -> Digitales Höhenmodell (2011)
- Ontario
- Québec
- SIGEOM-Datenbank
- Britisch-Kolumbien
- Datenbank zum Vorkommen von Mineralien
- Yukon
- Neuschottland
- provinziell
- Prinz-Edward-Insel
- Saskatchewan
- Datenbank mit Mineralvorkommen
- Neufundland -> hat in Chrome nicht funktioniert, habe es in Edge versucht
- Alberta
- Interaktive Kartenanwendung
- Nordwest-Territorien
- Mineralbesitz
USA
- USGS -> Kartendatenbank
- MRDS -> Mineralressourcen-Datensysteme
- Earth Explorer -> USGS-Fernerkundungsdatenportal
- Nationale Kartendatenbank
- Nationale Kartendatenbank
- Alaska
- ReSci -> Register der wissenschaftlichen Sammlungen des National Geological and Geophysical Data Preservation Program
- Michigan
Afrika
- Kataster
- Hydrogeologie -> Hydrogeologie und Geologie aus dem Grundwasseratlas
- Westafrika -> Mineralvorkommen
- Namibia
- Mineralische Vorkommen
- Bergleute
- Südafrika -> Geologische Untersuchung Südafrikas
- Mineralvorkommen -> Beispiel, bei dem Sie sich zum Herunterladen anmelden müssen
- Uganda -> GMIS-Portal
- Metallische Mineralien
- Tansania
- Mineralische Vorkommen
- Minen
- SIGM -> Tunesien Geologie und Bergbau
- Sambia -> Hier finden Sie Mietwohnungen in Sambia
Asien
China
- Geowissenschaftliche Daten
- Mineralische Vorkommen
- Nationale Datenbank für Mineralvorkommen
Indien
- Bhukosh -> India Geological Survey
- Beachten Sie, dass die Geologie in Rajasthan nur in Stücken funktioniert, was schmerzhaft ist – wenn Sie es möchten, lassen Sie es mich wissen
Saudi-Arabien
- Nationales geologisches Datenbankportal
Andere
Geologie
- StratDB
- GEM Globale aktive Fehler
- RRuff-Mineraleigenschaften
- Artikel -> Evolutionäres System der Mineralogie
- OneGeology
- Katalog
Iran
Geologie
Allgemein
- OSF -> Open Science Foundation
- Sedimentgehostete Basismetalle -> Sedimentgehostete Basismetalle
- Lithosphären-Athenosphären-Grenze -> LAB Hoggard/Czarnota
- Liste der geologischen Untersuchungen
Berichte
Australien
- Northern Territory GEMIS
- Südaustralien SARIG
- Westaustralien WAMEX
- Queensland
- NSW-Ausgrabungen
- NSW Digs geöffnet
- API nicht öffentlich
- PorterGEO -> Datenbanken zu weltweiten Mineralvorkommen mit zusammenfassenden Übersichten
- Sustainable Minerals Institute -> Organisation universitätsnaher Forscher in Queensland, die Datensätze und Wissen erstellen
Kanada
- Britisch-Kolumbien
- Suche -> Mineralbewertungsberichte
- Veröffentlichungen -> Veröffentlichungen
- Ontario -> Mineralbewertungsberichte
- Ontario-Veröffentlichungen
- Alberta
- Yukon
- Fußabdruck
- Manitoba
- Veröffentlichungen
- Neufundland und Labrador
- Nordwest-Territorien
- Neuschottland
- Québec
- Saskatchewan
- Suchen
- iMaQs -> Integriertes Bergbau- und Steinbruchsystem
USA
- Arizona
- Montana
- Nevada
- New Mexico
- Minnesota
- Michigan
- json
- Alaska
- Washington
Andere
- British Geological Survey NERC
- Mineralisches Potenzial
- Suchen
- API-Beispiel
- Veröffentlichungen
- MEIGA -> MEIGA 600 BGS Mineralexplorationsprojektberichte
- GeoLagret -> Schweden
- MinData -> Zusammenstellung von Gesteinsstandorten aus aller Welt
- Mineraliendatenbank -> Exportierbare Liste von Mineralien mit wissenschaftlichen Eigenschaften und Alter
- NASA
- ResearchGate -> Forscher- und Berufsnetzwerk
Werkzeuge
GIS
- QGIS -> GIS-Datenvisualisierung und -analyse Open-Source-Desktopanwendung, verfügt über einige ML-Tools: Unverzichtbar für eine schnelle und einfache Anzeige
- 2d Geologie in QGIS -> Workshop für QGIS NA 2020 Einführung geologischer Karten und Querschnitte für Studenten und Hobbyisten
- OpenLog -> Bohrloch -Plugin Beta
- Geo -SAM -> QGIS -Plugin für Segment irgendetwas mit Raster
- Evidenzgewichte
- Plugin
- GRAS
- Saga -> Spiegel von Sourceforge
3D
Pyvista -> VTK -Wraping -API für eine großartige Datenvisualisierung und -analyse
- Pvgeo
- Pyvista -Xarray -> Xarray -Daten in VTK 3D schmerzlos: Eine großartige Bibliothek!
- Omfvista -> Pyvista für das offene Bergbauformat
- Scipy 2022 Tutorial
PymeshLab -> Netzumwandlung
Offenes Bergbauformat
Whitebox -Werkzeuge
Untergrund
Geolambda -> AWS Lambda Setup
Geowissenschaftsanalyst
- GeOH5PY -> Daten an und von GEOH5 -Projekten abrufen
- GeoApps -> Notebook -basierte Anwendungen für Geophysik über GeoH5Py
- Geoh5vista
- GAMS -> Magnetische Datenanalyse
- Papier - Ein Rahmen für Mineralgeowissenschaftsdaten und Modelltretabilität - GeOH5
Rayshader
Vdeo
Geospatial General
- Python -Ressourcen für die Erdwissenschaft
- Geoutils -> Geospatial Analysis und Foster -Interoperabilität zwischen anderen Python -GIS -Paketen.
Vektordaten
Python
- Geopandas
- Dask-Geopandas
- GeoFileops -> Räumliche Verbindungen der Geschwindigkeit über Datenbankfunktionen und Geopackage
- Kart -> Verteilte Versionskontrolle für DAATA
- Pyesridump -> Bibliothek, um Daten im Maßstab von Esri Restservern zu greifen
R
- SF
- Terra -> Terra bietet Methoden zur Manipulation geografischer (räumlicher) Daten in "Raster" und "Vektor".
Rasterdaten
C
- exactextract -> Befehlszeile Zonale Statistiken in C.
Julia
- Rasters.jl -> Lesen und Schreiben gemeinsamer Rasterdatentypen
Python
- Rasterio -> Python -Basisbibliothek für Rasterdatenbearbeitung
- GeOreader -> Rasterdaten aus verschiedenen Satellitenmissionen verarbeiten
- RasterStats -> Zusammenfassende Geospatial -Raster -Datensätze basierend auf Vektorgeometrien
- Xarray -> Mehrdimensionale markierte Array -Handhabung und -analyse
- Rioxarray -> fabelhafte API auf hoher Ebene für die Bearbeitung von Rasterdaten mit Xarray
- Geocube -> Rasterisierung der Vektordaten -API
- ODC -GEO -> Werkzeuge für Rasternbasis mit Fernerkundungen mit vielen extrem praktischen Werkzeugen wie Farbpolizei, Gitter -Workflows
- COG Validator -> Format von Cloud -optimierten Geotiffs überprüfen
- serverless-datacube-Demo-> Xarray über Lithops / Coiled / Modal
- Xarray Spatial -> Statistische Analyse von Rasterdaten wie Klassifizierung wie natürliche Pausen
- XDGGS -> Andere Arten von Netzen
- XGCM -> Histogramme mit Etiketten
- XRFT -> Xarray -basierte Fourier -Transformationen
- XVEC -> Vektordatenwürfel für Xarray
- Xarray -Einstats -> Statistiken, lineare Algebra und Einops für Xarray
R
- Raster -> R -Bibliothek
- Terra -> bietet Methoden zur Manipulation geografischer (räumlicher) Daten in "Raster" und "Vektor".
- Sterne -> räumlich -zeitliche Arrays: Raster- und Vektordatacubes
- exaktextracr -> Raster -Zonale Statistik für r
Benchmarks
- Raster -Benchmark -> Benchmarking Einige Raster -Libaries in Python und R.
Gui
- WhiteBox Tools -> Python API, GUI usw. haben für die Berechnung des topografischen Nässeindex verwendet
Datenerfassung
- Piautostage-> 'Ein Open-Source-3D-gedruckter Tool für die automatische Sammlung hochauflösender Mikroskopbilder;' für Mineralproben entwickelt.
Datenkonvertierung
- AEM zu Seg-y
- ASEG GDF2
- CGG Outfile Reader
- Geosoft Grid an Raster
- Loop Geosoft Grid
- Mundharmonica Geosoft Grid -> Anfrage in Fortschritt bei der Konvertierung in Xarray
- Auscope -> Daten aus binären Gocad -Modellen
- Gocad SG Grid Reader
- Geomodel-2-3dweb-> Hier haben sie eine Methode, um Daten aus binären GOCAD-SG-Gittern zu extrahieren
- Leser von Leapfrog Mesh
- OMF -> Open Mining -Format für die Konvertierung zwischen Dingen
- PDF Miner
- VTK zu DXF
Geochemie
- Pygeochemtools -> Bibliothek und Befehlszeile, um schnelle QC und die Darstellung geochemischer Daten zu aktivieren
- SA Geochemische Karten -> Datenanalyse und Darstellung von Geochemie -Daten in Südaustralien aus der Geological Survey of SA
- Geochemisches Levening
- Scott Halleys Geochemie -Tutorial
- Periodenzüchter
Geostatistik
Geochronologie
- Geologische Zeitskala -> Code zum Erstellen, hat aber auch ein schönes reguläres CSV der Altersgruppen
Geologie
Gempy -> Implizite Modellierung
Edelsteinhilfe
Schleifenstruktur -> Implitätsmodellierung
Handbuch Python Geologia -> Analyse der Geologiedaten
MAP2LOOP -> 3D -Modellierungsautomatisierung
- Loop3d -> GUI für MAP2LOOP
PybedForms
SA Stratigraphy -> Stratigraphy Database Editor WebApp
Striplog
Analise_de_dados_estruturais_altamira
Globale Tektonik -> Open Source -Datensatz zum Aufbau, Platten, Ränder usw.
Zenodo -Ergänzungen
Litholog
Pygplates
Tutorialdaten
Geophysik
- GEOSCIENCEIENce Australia Utilities
- Geophysik für das Praktizieren von Geowissenschaftlern
- Potenzielle Feld -Toolbox -> Einige Xarray -basierte schnelle Fourier -Transformationsfilter - Derivate, Pseudogravität, RPG usw.
- Notebook -> Klasse mit einigen Beispielen [vertikaler Derivat, Pseudogravität, Aufwärtsdauer usw.)
- Berechnung Geophysik Sandbox
- RIS -Kellersediment -> Tiefe zum magnetischen Keller in der Antarktis
- Signalbildverarbeitung
Elektromagnetisch
- Geoscience Australia AEM
- UH Electromagnetics -> Kursarbeitsnotizen zum Verständnis dieser Domäne
- AEM -Interpretation
- Emag PY -> FDEM
- Resipie -> DC / IP
Schwerkraft und Magnetik
- Mundharmonika
- Filterbeispiele -> Fast Fourier Transform -basierte Verarbeitung über Xarray
- Australische Schwerkraftdaten
- Würmer
- Worms Update <- potenzielle Felder Wurmerstellung mit einigen geringfügigen Updates, um neue Networkx-API *Github Mirror zu verarbeiten
- Osborne Magnetic -> Umfragendatenverarbeitungsbeispiel
Seismisch
- Segyio
- Segysak -> Xarray -basierte Seg -y -Datenhandhabung und -analyse
- Geophysikalische Notizen -> Seismische Datenverarbeitung
Magnetotellurik
- MTPY
- Tutorials
- MTPY -> Aktualisierung des oben genannten, um die Dinge einfacher zu machen
- Mineralstatistik -Toolkit -> Abstand zur MT -Merkmalsanalyse
- Lithosphärische Leiterpapier
- MTWAFFLE -> MT -Datenanalyse Beispiele
- Pymt
- Widerstand
- Mekmus -> Werkzeuge zum Lesen des elektrischen Leitfähigkeitsmodells der USA
- Modell
Gitter
- GMT
- Verde
- Grid_aeromag -> brasilianisches Gitterbeispiel
- Pyinterp -> Mehrdimensionales Gitter über Boost
- Pseudogravität -> von Blakely, 95
Umkehrung
- Simpeg
- Mira Geoscience Fork -> für GeoApps verwendet
- Simpeg Fork
- Transformation 2020 Simpeg
- Transformation 2021 Simpeg
- Simpeg -Skripte
- Beispiel für Astic -Gelenkinversion
- Gimli
- Tomofast-X
- USGS Anonymous FTP
- USGS -Software -> längere Liste älterer nützlicher Dinge: Dosbox, jemand?
- Geophysik -Unterroutinen -> FORTRAN CODE
- 2020 Aachen -Inversionsprobleme -> Überblick über die Gravity -Inversionstheorie
Geochemie
- Pyrolit
- Nivellierung
- Pygeochem -Werkzeuge
- Geoquimica
- Geochemistrypi
Bohren
- DH2LOOP -> Bohrintervallhilfe
- Drilldown -> Bohrvisualisierung in Notebooks über GeOH5PY -> Hinweis DeSurveying
- Pygslib -> Downhole -Vermessung und Intervallnormalisierung
- Pyborehole -> Verarbeitung und Visualisierung von Bohrlochdaten
- DHComp -> Komposites Geophysikalische Daten zu einer Reihe von Intervallen
Fernerkundung
- Fantastische Spektralindizes -> Anleitung zur Spektralindexerstellung
- Datenwürfel öffnen
- DEA -Notizbücher -> Code für die Verwendung in Workflows im ODC -Stil
- Datacube -Stats -> Statistische Analysebibliothek für ODC
- GEO -Notizbücher -> Code Beispiele aus Element 84
- Raster4ML -> Eine große Anzahl von Vegetationsindizes
- Lefa -> Frakturanalyse, Abstammungslinien
Serverlos
- Kerchunk -> serverloser Zugriff auf Cloud -basierte Daten über Zarr
- Kerchunk GeOH5 -> Zugriff auf Geowissenschaftsanalysten/GeOH5 -Projekte serverlos über Kerchunk
- ICEHUNK -> Transaktionsspeicher -Engine für Tensor / ND -Array -Daten, die für die Verwendung im Cloud -Objektspeicher ausgelegt sind.
STAC -Kataloge
- DEA StackStac -> Beispiele für die Arbeit mit Digital Earth Australia Data
- Einnahme-Stac
- ML AOI -Erweiterung
- ML -Modellerweiterungsspezifikation -> Modellspezifikation für maschinelle Lernmodell für Katalogingspatio -zeitliche Modelle
- ODC -STAC -> Datenbank freien offenen Datenwürfel
- Pystac
- Sa-Suche
- StackStac -> Metadaten beschleunigten Dask- und Xarray -Timeseries
Statistiken
- Orange -> Data Mining GUI
- Hdstats -> Algorithmische Grundlage geometrischer Mediane
- Hdmedians
Visualisierung
- TV -> Satellitenbilder in einem Terminal anzeigen
- Anstritt
- Sitzt
- Hsdar
- Sterne
- Peru Gold Mining SAR
Mineralpotential
- Nickel Mineralpotential Mapping -> ESRI -basierte Analyse
- Prospektivität Online -Tool
Bergbauökonomie
- Bluecap -> Framework von der Monash University zur Bewertung der Lebensfähigkeit der Bergungen
- ZiPFS -Gesetz -> Kurvenanpassung der Verteilung von Mineralabliedern
- Pyasx -> ASX Data Feed Scraping
- Metallpreis -API -> Containerisierte Microservice
Visualisierung
- Napari -> Mehrdimensionaler Bild Betrachter
- Holoviews -> Datenvisualisierung von großem Maßstab
- GraphViz -> Diagramm -Plot-/Anzeigeunterstützungsinstallationsinformationen
- Räumlich-kde
Colormaps
- CET wahrnehmungsgemäß einheitlich Colormaps
- PU COLORMAPS -> Für den Benutzer im Geowissenschaftsanalyst formatiert
- Colormap -Verzerrungen -> eine Panel -App, die Verzerrungen durch nicht -konpertenonische Kolormaps auf geophysikalischen Daten erstellt hat
- Rissdaten aus Colormpas
- Öffnen Sie geowissenschaftliche Codeprojekte
Geodaten
- Geospatial>- Installiert mehrere gemeinsame Python-Pakete
- Geospatial Python -> kuratierte Liste
Technologiestapel
C
- GDAL -> Absolut entscheidender Datenumwandlungs- und Analyse -Framework
- Tools -> Hinweis enthält viele Befehlszeilen -Tools, die ebenfalls sehr nützlich sind
Julia
- Julia Erde -> Förderung der Geospatial Data Science und geostatistische Modellierung in der Erdwissenschaften
- Julia Geodynamics -> Computational Geodynamics Code
- Einführung in Julia für Geowissenschaften
Python - Pydata
- ANACONDA -> LOTS bereits mit diesem Paketmanager installiert.
- Gdal et al.
- Git Bash -> Conda dazu bringen, in Git Bash zu arbeiten
- Numpy mehrdimensionale Arrays
- PANDAS TABULUS -Datenanalyse
- Matplotlib -Visualisierung
- Zarr -> komprimierte, verteilte verteilte Array
- Dask -> Parallele, verteiltes Computing
- Dask Cloud Anbieter -> Starten Sie die Cluster von Dask -Clustern automatisch auf der Cloud
- Dask Median -> Notebook, das einen Dask Median -Funktionsprototyp gibt
- Python Geospatial -Ökosystem -> kuratierte Informationen
Rost - Georust
- Georust -> Sammlung von Geospatial -Versorgungsunternehmen im Rost
Datenbanken
- Duckdb -> In Process OLAP DB mit Geschwindigkeit - verfügt über einige Geospatial- und Array -Funktionen
- ibis + duckdb geopsatial -> scipy2024 talk
Datenwissenschaft
- Python Data Science Vorlage -> Projektpaket Setup
- Awesome Python Data Science -> kuratierter Leitfaden
Wahrscheinlichkeit
- Distfit -> Wahrscheinlichkeitsdichteanpassung
Wissenschaft
- Python -Ressourcen für Erdwissenschaften
- Fantastisches wissenschaftliches Computer
Docker
- AWS Deep Learning Container
- Räumlicher Docker
- DL Docker Geospatial
- Rocker
- Docker Lambda
- Geobase
- DL Docker Geospatial
Ontologien
- Geologische Gesellschaft des Queensland -Vokabulars
- Geologische Eigenschaftendatenbank
- Geofeatures
- Geologische Gesellschaft von Westaustralien
- Stratigraphisch
- Geowissenschaftlicher Wissensmanager
- Geosciml -Vokabeln
Bücher
Python
- Python Geospatial Analysis Kochbuch
- Geoprocessing mit Python -> Manning LiveBook
Andere
- Lehrbuch
- Maschinelles Lernen in der Öl- und Gasindustrie
- Geokomputation mit r
- Earthdata Cloud -Kochbuch -> So greifen Sie auf NASA -Ressourcen zu
- Kochbuch des Datenreinigers -> UNIX -Tools für die Verwendung von Daten zum Streben und Reinigen einsetzen
- Enzyklopädie der mathematischen Geowissenschaften
- Handbuch der mathematischen Geowissenschaften
Andere
- GXPY -> Geosoft Python API
- Eartharxiv -> Papiere aus dem Preprint -Archiv herunterladen
- Essoar -> Preprint Papierarchiv
Datensätze
Welt
Geologie
- Grundgestein -> Generalisierte Geologie der Welt
- Glim -> Globale Lithologiekarte
- Paläogeologie Ein Atlas von phanerozoischen paläogeografischen Karten
- Sedimentschichten -> Globale 1 -km -Netzdicke von Boden-, Regolith- und Sedimentablagerungsschichten
- Weltstresskarte -> Globale Zusammenstellung von Informationen über das heutige Stressfeld der Kruste
- GMBA -> Global Mountain Inventory
Geophysik
Schwerkraft
- Krümmung -> Globale Krümmungsanalyse aus Schwerkraftgradientendaten
- WGM 2012
Magnetik
- EAMG2V3 _> Erdmagnetanomalie -Gitter
- WDMAM -> Welt Digital Magnetic Anomalie Map
Magnetotellurik
- EMC -> Globales 3D -inverse Modell der elektrischen Leitfähigkeit
Seismisch
- Labor slnaafsa
- Labor CAM2016
- Moho -> Gemma -Daten
- Moho -> Szwillus Daten
- Seismische Geschwindigkeit -> Debayle et al.
- Lithoref18 -> Ein globales Referenzmodell der Lithosphäre und des oberen Mantels durch gemeinsame Inversion und Analyse mehrerer Datensätze
- Crust1.0 -> Globales Krustenmodell netCDF
- Übersicht Homepage
Thermal
Allgemein
- Tiefe Zeit Digital Earth -> Daten und Visualisierung für eine Vielzahl von Datenquellen und Modellen
- Earthchem -> Community -gesteuerte Erhaltung, Entdeckung, Zugang und Visualisierung geochemischer, geochronologischer und petologischer Daten
- Georoc -> Geochemische Zusammensetzung von Gesteinen
- Globale Geologie -> Ein kurzes Rezept zur Erstellung einer globalen Geologiekarte im GIS -Format (z.
- Große Igenous Provinc Commission
- Mantelfahnen
- Sedimentdicke -> Karte
- SpatialReference.org -> Repository für die Website
Australien
- Gemeinsames Erdmodell
- Schwere Mineralkarte
- Schwere Mineralkarte des australischen Piloten
- Glänzende App
Geochemie
- Prädiktive Gitter der Hauptoxidkonzentrationen in Oberflächengestein und Regolith über dem australischen Kontinent -> verschiedene Oxide
Geologie
- Alkalische Gesteine Atlas
- Zenozoisch
- Mesozoikum
- Paläozoikum
- Archaer
- suchen
- Proterozoische alkalische Gesteine -> Proterozoikum alkalisch und verwandte magmatische Gesteine von Australien GIS
- Zenozoisch
- Mesozoikum
- Paläozoikum
- Archaer
- Papier https://ecat.ga.gov.au/geonetwork/srv/eng/catalog.search#/metadata/147963
- Hydrogeologie -> Hydrogeologiekarte Australiens
- Hydrogeologie -> 5m
- Layered Geology -> 1m
- Oberflächengeologie -> 1 m Skala
- Der australische Mafic-Ultramafic Magmatic Events GIS-Datensatz
Geophysik
- Schwerkraft -> 2019 Australische nationale Schwerkraftgitter
Magnetik
- TMI -> Magnetische Anomaliekarte von Australien, siebte Ausgabe, 2019 TMI
- 40m -> 40m Version
- VRTP -> GRID TOTAL MAGNETIGNISSIGKEIT (TMI) GRID Australiens mit variabler Reduktion auf Pole (VRTP) 2019
- 1VD -> Gesamtmagnetintensitätsnetz von Australien 2019 - Erster vertikaler Derivat (1VD)
Radiometrie
- Radiometrie -> Komplettes radiometrisches Gitter von Australien (RadMAP) V4 2019 mit modellierter Infill
- K -> radiometrisches Gitter von Australien (RADMAP) V4 2019 gefilterte PCT -Kaliumnetze
- U -> radiometrisches Netz von Australien (Radmap) V4 2019 gefilterte PPM -Uranium
- TH -> Radiometrisches Gitter von Australien (Radmap) V4 2019 gefilterte ppm Thorium
- TH/K -> Radiometrisches Netz von Australien (Radmap) V4 2019 -Verhältnis Thorium über Kalium
- U/K -> Radiometrisches Gitter von Australien (Radmap) V4 2019 -Verhältnis Uran über Kalium
- U/TH -> Radiometrisches Netz von Australien (Radmap) V4 2019 -Verhältnis Uran über Thorium
- U Squared/Th -> Radiometrisches Netz von Australien (Radmap) V4 2019 -Verhältnis Uran quadratisch über Thorium
- Dosisrate-> radiometrisches Gitter von Australien (Radmap) V4 2019 gefilterte terrestrische Dosisrate
- Ternäres Bild -> radiometrisches Gitter von Australien (Radmap) V4 2019 - Ternäres Bild (K, Th, U)
Ausaem
- AUSAEM 1 -> AUSAEM Jahr 1 NT/Qld Airborne Electromagnetic Survey; GA Layered Earth Inversion Produkte
- AUSAEM 1 -> AUSAEM Jahr 1 NT/QLD: Tempest® Airborne Electromagnetische Daten und EM Flow® -Leitfähigkeitsschätzungen
- AUSAEM 1 -> AUSAEM1 Interpretationsdatenpaket
- Ausaem 2 -> Ausaem 02 WA/NT 2019-20 Airborne Electromagnetic Survey
- Ausaem -Wa -> Ausaem -WA, Murchison Airborne Electromagnetic Survey Blöcke
- Ausaem-Wa-> Ausaem-Wa, Southwest-Albany Airborne Electromagnetic Survey Blocks
- Ausaem -Wa -> Ausaem WA 2020-21, Ostgoldfields & Ost Yilgarn Airborne
- Ausaem -Wa -> Ausaem (WA) 2020-21, Earaheedy & Desert Strip
- Ausaem ERC -> Ausaem Eastern Resources Corridor
- Ausaem WRC -> Ausaem Western Resources Korridor
- Interp -Übersicht
- Nationale Leitfähigkeitsnetze der Oberfläche und Nahen Oberfläche -> Nationale ML -Interpolation für Ausem in ähnlicher Weise wie Nordaustralien
Auslamp
- Auslamp Sea -> Widerstandsmodell des südostaustralischen Festlandes aus Auslamp Magnetotelluric -Daten
- Victoria -Daten
- NSW -Daten
- Auslamp Tisa -> Widerstandsmodell, das aus Magnetotellurik abgeleitet ist: Auslamp -Tisa -Projekt
- Auslamp Delamerian -> Lithosphärischer Widerstandsmodell des delamerischen Orogens aus Auslamp Magnetotelluric -Daten
- Auslamp ne Sa
- Auslamp Gawler
- Auslamp Stationen -> circa 2017
- Tasmanides Papier
Moho
Mineralablagerungen
- Geologische Umgebung, Alter und Ausstattung der großen australischen Mineralablagerungen
- Ein umfassender Datensatz für die australische Minenproduktion von 1799 bis 2021
Mineralpotential
- Übersicht - Geoscience Australia -> Überblick über Veröffentlichungen und Datensätze
- Sediment veranstaltete Zink
- Bericht
- Sedimente beherbergte Kupfer
- Bericht
- Abstrakt
- Carbonatit -Elemente für Seltene erd
Minenabfall
- Australische Minenabfälle
Einheimischer Titel
- National Native Title Tribunal
Fernerkundung
- Landsat Bare Erde - nackte Erde Median aus Landsat
- Verbesserte barste Erde Landsat -Bilder für Boden- und lithologische Modellierung: Datensatz -> Details einer Verbesserung
- Globaler Bergbau-Fußabdruck aus hochauflösenden Satellitenbildern ** Papier
- Dem -> Australien 1 Sec Srtm DEM verschiedener Sorten
Struktur
- Hauptkrustengrenzen Australiens - 2024 Ausgabe
Geschwindigkeit
- Au Tomo -> Geschwindigkeitsmodell der nächsten Generation der australischen Kruste aus synchroner und asynchroner Umgebungsgeräuschbildgebung
Topographie
- Multiscale topografische Position - RGB
- Info
- Topografischer Nässenindex - 1 und 3 Bogensekunden
- Info
- Topografischer Positionsindex - 1 und 3 Bogensekunden
- Info
- Verwitterungsintensitätsmodell
- Info
- {Info] (https://researchdata.edu.au/wather-intensity-model-australia/1361069)
Nördlich
- Abdeckdicke TISA -> Deckendicke für Tennant Creek MT ISA mit interpolierten Gittern
- Hochauflösende Leitfähigkeitskartierung unter Verwendung regionaler AEM -Umfrage und maschinelles Lernen -> ML Leitfähigkeits -Interpolation für AusaEM
- Erweiterte Zusammenfassung
- Solide Geologie -> Solid Geologie des nordaustralischen Kratons
- Inversionsmodelle -> Die nordaustralischen Craton 3D -Schwerkraft- und Magnetinversionsmodelle
- Ni-Cu-PGE-> Potenzial für intrusion gehostete Ni-Cu-PGE-Sulfidablagerungen in Australien: Eine Analyse des kontinentalen Maßstabs der Prospektivität des Mineralsystems
- TISA IOCG -> Eisenoxid Kupfer -Gold (IOCG) Mineralpotentialbewertung für den Tennant Creek -MT ISA -Region: Geospatial -Daten
- TISA -Veränderung -> Magnetit- und Hämatitveränderungsproxies unter Verwendung von 3D -Schwerkraft und magnetischer Inversion produzieren
Südaustralien
Geologie
- Grundgestein Geologie
- Kristalline Keller -> Kristalline Keller, die sich kreuzen, Bohrlöcher
- Minen und Mineralablagerungen
- Mineralbohrlöcher
- Solid Geology 3d
- 100k Fehler
- Archaer
- Archaische Fehler
- Mesoproterozoic -> Mitte
- Mesoproterozoic -> Mittelfehler
- Mesoproterozoikum -> spät
- Mesoproterozoische Fehler -> Späte Fehler
- Neoproterozoikum
- Neoproterozoische Fehler
- Stuart Regal Sedimentkupfer 3D -Modell
- Oberflächengeologie
Geophysik
- Auslamp 3D -> Magnetotellurische Inversionen
- GCAS -> Gawler Craton Airborne Survey
- Schwerkraft -> Schwerkraftgitter
- Stationen -> Schwerkraftstationen
- Magnetik -> Magnetik
- Seismische Linien -> seismische Linien
Gawler
- Gawler MPP -> Gawler Mineral Promotion Project - Daten
Queensland
- Überblick
- Deep Mining Queensland-Tiefes Bergbau Queensland
- Deposit Atlas -> Northwest Mineral Province Deposit Atlas
- Geologie -> Geologie -Serienübersicht
- Mineral- und Energiebericht -> North -West Queensland Mineral and Energy Province Report 2011 -NWQMEP
- Vektoring -> Mineralgeochemie Vectoring
- Erdölbohrungen
- Kohlenahtgasbrunnen
- Bohrlöcher
Kloncurry
- Toolkit -> Multielement -Toolkit und Labor
Nordgebiet
- Arunta Iocg-> Eisenoxid-Kupfer-Gold-Potenzial der südlichen Arunta-Region
- South Uranium -> südliches Nordgebiet Uran- und Geothermie Energiesystembewertung Digil Datenpaket
- Tennant Creek -> Leitfähigkeitsmodell aus magnetotellurischen Daten in der Ost -Tennant -Region, Northern Territory
New South Wales
Geologie
- Seamless Geology -> NSW Nahtloses Geologie -Datenpaket (ältere Version auch auf dieser Seite)
Mineralpotenzielle Datenpakete
- Curnamona
- Ost Lachlan
- Zentral Lachlan
- Süd -Neuengland
Westaustralien
Geochemie
Geologie
- 100.000 Grundgestein
- 100K Mapsheets für die Oberfläche Sie müssen einzeln herunterladen und kombinieren - sie sind nicht konsistent
- 250k Mapsheets für die Oberfläche Sie müssen einzeln herunterladen und kombinieren - sie sind nicht konsistent
- 500k Grundgestein
- Verlassene Minen
- Mineralvorkommen
Mineralpotential
- Komatiite verderbte Nickel
- Bericht
Aussicht
- Capricorn-> Prospectivity -Analyse unter Verwendung eines Mineralsystemansatzes - Capricorn -Fallstudienprojekt
- König Leopold -> Mineralische Perspektivität des Königs Leopold Orogen und Lennard Shelf: Analyse potenzieller Felddaten in der Region West Kimberley
- Yilgarn Gold
- Yilgarn 2 -> Vorhersage Mineralentdeckung im östlichen Yilgarn -Kraton: Ein Beispiel für das Targeting eines orogenen Goldmineralsystems im Bezirksmaßstab
- [Shop Note] -> WA hat einige Prospectivity -Pakete zur Verfügung, um auf USB -Laufwerk für 50-60au -Preise zu kaufen -siehe Abschnitt Geospaital Maps
Tasmanien
Geologie
- 250k
- 500K
- 25K
- Mineralvorkommen
- 3D-Modell
Victoria
Neuseeland
- Mineraldatenpaket -> Mineral Exploration Data Pack
Nordamerikanien
- Nationale Geophysikalische, geologische und mineralische Ressourcendaten und Gitter -> hat auch einige Australien -Daten
- Grundwasserbrunnen -> Datenbank
- Maximale horizontale Spannungsorientierung und relative Spannungsgrößen (Fehlregime) Daten in ganz Nordamerika
Kanada
Geologie
- Karte
- Geologie -> Aktualisierte Grundgestein Geologiekarte
- Geologie -> Grundgestein Geologie Zusammenstellung und regionale Synthese von Süd -Rae und Teile von Hearne Domains, Provinz Churchill, Nordwestterritorien, Saskatchewan, Nunavut, Manitoba und Alberta
- Moho -> Nationale Datenbank von Moho -Tiefenschätzungen Schätzungen aus seismischer Brechung und teleseismischen Erhebungen
Geophysik
- DAP -Suche -> Geoportal -Suche - Beachten
- [Schwerkraft, Magnetik, Radiometrie] -> Meistens Landskala
Europa
Finnland
- FODD -> Fennoscandische Mineralablagerungen
Irland
- MPM -> Mineral Potentinal Mapping Project
Papiere mit Code
NLP
- https://www.sciencedirect.com/science/article/pii/s2590197422000064?via%3diHub#bib20- -> Geowissenschaftliche Sprachmodelle und deren intrinsische Bewertung -> NRCAN -Code oben [Inklusive Modell]
- https://www.researchgate.net/publication/334507958_word_embeding_for_application_in_geosciences_development_evaluation_and_examples_of_soil -related_concepts -> Geovec [Beinhaltet das Modell]
- https://www.researchgate.net/publication/347902344_portuguese_word_embeding_for_the_oil_and_gas_industry_development_and_evaluation -> petrovec [integriert das Modell]
- Eine Ressource für die automatisierte Suche und Kollektion geochemischer Datensätze aus Journal -Nahrungsergänzungsmitteln
Geochemie
- https://www.researchgate.net/publication/365758387_a_resource_for_automated_search_and_collation_of_geochemical_datasets_from_journal_supplements
- https://github.com/erinlmartin/figshare_geoscrape?s=09
Geologie
- https://github.com/sydney-machine-learning/autoencoders_remotesensing-> gestapelte Autocoder für lithologische Zuordnung
Mineral
- https://www.researchgate.net/publication/318839364_network_analysis_of_mineralogical_Systems
Papiere mit Features -Daten
- Diese können Sie die Ausgabe aus den angegebenen Daten ausgeben.
Mineralische Aussicht
- https://www.sciencedirect.com/science/article/pii/s016913682100010x#s0135 -> Prospectivity -Modellierung von kanadischen magmatischen Ni (± Cu ± Co ± PGE) Sulfid Mineralsysteme [Wurf wertvolle Lesen]
- https://www.sciencedirect.com/science/article/pii/s0169136821006612#b0510 -> Daten -Angesichts der modellierenden Prospectivity -Modellierung von Sediment -Hosted -Zn -PB -Mineralsystemen und ihren kritischen Rohstoffen [gut wert wert.
- https://www.researchgate.net/publication/358956673_towards_a_fully_data-driven_prospectivity_mapping_methodology_a_case_study_of_the_Soutastern_Churchill_province_and_and_labrador_labrador_labrador_labrador
England
- https://www.researchgate.net/publication/358083076_maachine_learning_for_geochemical_exploration_classifing_metallogenic_fertilitor_in_arc_magmas_and_insights_into_porphyry_deposit_depositation
Geochemie
- https://www.researchgate.net/publication/361076789_automated_maachine_learning_pipeline_for_geochemical_analysis
Geologie
- https://eprints.utas.edu.au/32368/ -> maschinen-assistierte Modellierung von Lithologie und Metasomatismus
Geophysik
- https://github.com/tomasnaprstek/aeromagnetic_cnn - aeromagnetische CNN
- Papier https://www.researchgate.net/publication/354772176_convolution_neural_networks_applied_to_the_interpretation_of_lineings_in_aeromagnetetic_data
- PhD -> Neue Methoden zur Interpolation und Interpretation von Linien in aeromagnetischen Daten
- Papier https://www.researchgate.net/publication/354772176_convolution_neural_networks_applied_tthe_interpretation_of_lineAdings_in_aeromagnetic_data -> Konvolution
Geospatial Output - Kein Code
- https://geoscience.data.qld.gov.au/report/cr113697 -> nwmp datengesteuerte Mineralforschung und geologische Zuordnung [CSIRO auch]
Zeitschriften
- https://www.sciencedirect.com/journal/artificial-intelligence-in-geosciences-> künstliche Intelligenz in Geowissenschaften
Papiere
- Im Allgemeinen nicht ML oder kein Code/Daten und manchmal überhaupt keine Verfügbarkeit
- Wird sich schließlich in Dinge unterteilen, die Datenpakete haben oder nicht wie NSW -Zonenstudien.
- Wenn Sie jedoch an einem Bereich interessiert sind, können Sie jedoch häufig ein Bild ein Bild als grobe Führer haben.
- Im Allgemeinen sind diese nicht reproduzierbar - einige wie die Studien zur NSW Prospectivity Zone und NWQMP sind mit einigen Arbeiten.
- Das gelegentliche Papier in diesem Abschnitt kann oben aufgeführt sein
Neu in der Datei
Allgemein
- https://www.researchgate.net/publication/337650865_a_combinative_knowledge-driven_integration_method_for_integrating_geophysical_layers_with_geologische_and_geochemical_datasets
- https://link.springer.com/article/10.1007/s11053-023-10237-W-Eine neue Generation künstlicher Intelligenzalgorithmen für die Mapping Mineral Prospectivity
- https://www.researchgate.net/publication/235443297_addressing_chalengeles_with_exploration_datasets_to_generate_usable_mineral_potential_maps
- https://www.researchgate.net/publication/3300777321_an_impreved_data-driven_multiple_criteria_decision-making_procedure_for_spatial_modeling_of-mineral_prospective_function_function_priction-prodiction-prodiction-
- Künstliche Intelligenz für Mineralforschungen: Eine Überprüfung und Perspektiven zu zukünftigen Richtungen von Data Science -> https://www.sciencedirect.com/science/article/pii/s0012825224002691
- https://www.researchgate.net/project/Bayesian-machine-learning-for-geologic-modeling-and-geophysical-segmentation
- https://www.researchgate.net/publication/229714681_classifiers_for_modeling_of_mineral_potential
- https://www.researchgate.net/publication/352251078_data_analysis_meethods_for_prospective_modelling_as_applied_to_mineral_exploration_targeting_state of the-the-the-the-art_outlook
- https://www.researchgate.net/publication/267927728_data-driven_evidential_belief_modeling_of_mineral_potential_using_few_prospects_and_evidence_with_miss_values
- https://www.linkedin.com/pulse/deep-learning-peets-downward-continuation-caldera-analytics/?trackingid=ybkv3ukni7ygh3irchzdgw%3d%3d
- https://www.researchgate.net/publication/382560010_dinov2_rocks_geological_image_analysis_classification_segmentation_and_interpretability
- https://www.researchgate.net/publication/368489689_discrimination_of_pb-zn_deposit_types_using_sphalerite_geochemistry_new_insights_from_maachine_algorithm
- https://link.springer.com/article/10.1007/s11430-024-1309-9-> Erklärbare Modelle für künstliche Intelligenz für die Mineral-Prospectivity-Mapping erklärt
- https://www.researchgate.net/publication/229792860_FROM_PREDICTIVE_MAPPING_OF_MINERAL_PROSPORTIVIVITÄT_TO_QUANTITATIVE_STIMATION_OF_NUMBER_OF_UNDISCOVERED_PROSPECTIONS
- https://www.researchgate.net/publication/3399997675_fully_reversible_neural_networks_for_large-scale_surface_and_sub-
- arxiv
- Präsentation
- Konferenz
- Juliacon
- https://www.researchgate.net/publication/220164488_geocomputation_of_mineral_exploration_targets
- https://www.researchgate.net/publication/272494576_geological_knowledge_discovery_and_minerals_targeting_from_regolith_using_a_maachine_learning_approach
- https://www.researchgate.net/publication/280013864_Geometric_average_of_spatial_evidence_data_layers_a_gis-basiert_multi-criteria_decision-making_appros_minal_prospivity_maping
- https://www.researchgate.net/publication/355467413_harnessing_the_power_of_artificial_intelligence_and_maachine_learning_in_mineral_exploration-oppportunities_and_calutionary_notes
- https://www.researchgate.net/publication/335819474_importance_of_spatial_prredictor_variable_selection_in_maachine_learning_applications_-moving_from_data_reProduction_to_spatial_prediction
- https://www.researchgate.net/publication/337003268_Improved_supervised_classification_of_bedrock_in_areas_of_transported_overburden_Applying_domain_expertise_at_Kerkasha_Eritrea - Gazley/Hood
- https://www.researchgate.net/publication/360660467_lithospheric_conductors_reveal_Source_regions_of_convergent_Mineral_Systems
- https://api.research-repository.uwa.edu.au/portalfiles/portal/5263287/lysytsyn_volodymyr_2015.pdf (PhD-These) GIS-basierte epithmale Kupferprospektivitätskartierung des MT ISA-ISA-ISA-Implikations: Implikationen für Erkundungen für Erkundungen für Erkundungen für Erkundungszielgeräte zu zielen zu zielen
- https://www.researchgate.net/publication/374972769_knowledge_and_technology_transfer_in_and_beyond_mineral_exploration -> Wissens- und Technologieübertragung in und jenseits der Mineralerforschung
- https://www.researchgate.net/publication/331946100_maachine_learning_forn_data-driven_discovery_in_solid_earth_geoscience
- https://thesen.hal.science/tel-04107211/document-Ansätze für maschinelles Lernen für geologische heterogene Quellen unter der Oberfläche
- https://www.researchgate.net/publication/309715081_Magmato-hydrothermal_space_A_new_metric_for_geochemical_characterisation_of_metallic_ore_deposits - Magmato-hydrothermal space: A new metric for geochemical characterisation of metallic ore deposits
- https://www.researchgate.net/publication/220164234_mapping_complexity_of_spatial_distribution_faults_using_fractal_and_multifractal_models_vectoring_towards_targets
- https://www.researchgate.net/publication/220163838_objective_selection_of_suitable_unit_cell_size_in_data-modeling_of_mineral_prospectivity
- https://www.researchgate.net/publication/273500012_Prediction-area_p-a_plot_and_c-a_fractal_analysis_to_cassify_and_evaluate_evidential_maps_forneral_prospectivity_modeling
- https://www.researchgate.net/publication/354925136_soil-sproble_geochemistry_normalisierte
- https://link.springer.com/article/10.1007/S12665-024-11870-1-> Quantifizierung der Unsicherheit von geowissenschaftlichen Karten, die sich auf das menschliche sensorische Engagement stützen
- https://www.researchgate.net/publication/235443294_the_effect_of_map-scale_on_geological_complexity
- https://www.researchgate.net/publication/235443305_the_effect_f_map_scale_on_geological_complexity_for_computer-aided_exploration_targeting
- https://link.springer.com/article/10.1007/s11053-024-10322-8-> Workflow-induzierte Unsicherheit in der datengesteuerten Mineral-Prospectivity-Mapping
Mineralische Aussicht
Australien
- https://www.mdpi.com/2072-4292/15/16/4074-> Ein räumlicher datengetriebener Ansatz für die Mineral-Prospectivity-Mapping
- https://www.researchgate.net/publication/353253570_a_truly_spatial_random_forests_algorithm_for_geoscience_data_analysis_and_modelling
- https://www.researchgate.net/publication/253217016_advanced_metologies_for_the_analysis_of_databases_of_mineral_depossits_and_major_faults
- https://www.researchgate.net/publication/362260616_assessing_the_impact_of_conceptual_Mineral_Systems_uncertainty_on_prospectivity_prredicions
- https://www.researchgate.net/publication/352310314_central_lachlan_mineral_potential_study
- https://meg.resourcesregulator.nsw.gov.au/sites/default/files/2024-05/EITH%202024%20Muller_exploration_in_the_house_keynote.pdf -> Critical Minerals -Prospectivity -Mapping unter Verwendung von Generativ -AI -AI -AI -A -Kee -A -Keeynote.
- https://www.tandfonline.com/doi/pdf/10.1080/22020586.2019.12073159?Needaccess=true -> Integration eines Mineraliensystems mit maschinellem Lernen: Eine Fallstudie von 'Modern Minerals Exploration' in den MT -Wald in Norden - nach Norden - nach Norden - nach Norden - nach Norden - nach Norden - nach Norden - nach Norden - nach Norden - nach Norden - nach Norden - nach Norden - nach Norden - nach Norden - nach Norden - nach Norden Gawler Craton, Südaustralien
- https://www.researchgate.net/publication/365697240_Mineral_Potential_Modelling_of_orogenic_gold_systems_in_the_granites-tanami_orogen_northern_territory_Auustralia_Multi-Technique_approploytech_aploteconach_aploqueach_aploqueach_aploqueachachachachse_Necthern
- https://publications.csiro.au/publications/publication/picsiro:ep2022-0483 -> Signaturen wichtiger Mineralsysteme in der Provinz Ost -Mount ISA, Queensland: Neue Perspektiven aus Datenanalysen
- https://link.springer.com/article/10.1007/s11004-021-09989-z-> Stochastische Modellierung von Mineral-Explorationszielen
- https://www.researchgate.net/publication/276171631_Supervised_Neural_Network_Targeting_and_Classification_Analysis_of_Airborne_EM_Magnetic_and_Gamma-ray_Spectrometry_Data_for_Mineral_Exploration
- https://www.researchgate.net/publication/353058758_Using_Machine_Learning_to_Map_Western_Australian_Landscapes_for_Mineral_Exploration
- https://www.researchgate.net/publication/264535019_Weights-of-evidence_and_logistic_regression_modeling_of_magmatic_nickel_sulfide_prospectivity_in_the_Yilgarn_Craton_Western_Australia
Argentinien
- https://www.researchgate.net/publication/263542691_ANALYSIS_OF_SPATIAL_DISTRIBUTION_OF_EPITHERMAL_GOLD_DEPOSITS_IN_THE_DESEADO_MASSIF_SANTA_CRUZ_PROVINCE
- https://www.researchgate.net/publication/263542560_EVIDENTIAL_BELIEF_MAPPING_OF_EPITHERMAL_GOLD_POTENTIAL_IN_THE_DESEADO_MASSIF_SANTA_CRUZ_PROVINCE_ARGENTINA
- https://www.researchgate.net/publication/277940917_Porphyry_epithermal_and_orogenic_gold_prospectivity_of_Argentina
- https://www.researchgate.net/publication/269518805_Prospectivity_for_epithermal_gold-silver_deposits_in_the_Deseado_Massif_Argentina
- https://www.researchgate.net/publication/235443303_Prospectivity_mapping_for_multi-stage_epithermal_gold_mineralization_in_Argentina
Brasilien
- https://www.researchgate.net/publication/367245252_Geochemical_multifractal_modeling_of_soil_and_stream_sediment_data_applied_to_gold_prospectivity_mapping_of_the_Pitangui_Greenstone_Belt_northwest_of_Quadrilatero_Ferrifero_Brazil
- https://www.researchgate.net/publication/381880769_How_do_non-deposit_sites_influence_the_performance_of_machine_learning-based_gold_prospectivity_mapping_A_study_case_in_the_Pitangui_Greenstone_Belt_Brazil
- https://www.researchsquare.com/article/rs-5066453/v1 -> Enhancing Lithium Exploration in the Borborema Province, Northeast Brazil: Integrating Airborne Geophysics, Low-Density Geochemistry, and Machine Learning Algorithms
- https://www.researchgate.net/publication/362263694_Machine_Learning_Methods_for_Quantifying_Uncertainty_in_Prospectivity_Mapping_of_Magmatic-Hydrothermal_Gold_Deposits_A_Case_Study_from_Juruena_Mineral_Province_Northern_Mato_Grosso_Brazil
- https://www.researchgate.net/publication/360055592_Predicting_mineralization_and_targeting_exploration_criteria_based_on_machine-learning_in_the_Serra_de_Jacobina_quartz-pebble-metaconglomerate_Au-U_deposits_Sao_Francisco_Craton_Brazil
Unscharf
- https://www.researchgate.net/publication/272170968_A_Comparative_Analysis_of_Weights_of_Evidence_Evidential_Belief_Functions_and_Fuzzy_Logic_for_Mineral_Potential_Mapping_Using_Incomplete_Data_at_the_Scale_of_Investigation A Comparative Analysis of Weights of Evidence, Evidential Belief Functions, and Fuzzy Logic for Mineral Potential Mapping Using Incomplete Data at the Scale of Investigation
- https://www.researchgate.net/publication/360386350_Application_of_Fuzzy_Gamma_Operator_to_Generate_Mineral_Prospectivity_Mapping_for_Cu-Mo_Porphyry_Deposits_Case_Study_Kighal-Bourmolk_Area_Northwestern_Iran
- https://www.researchgate.net/publication/348823482_Combining_fuzzy_analytic_hierarchy_process_with_concentration-area_fractal_for_mineral_prospectivity_mapping_A_case_study_involving_Qinling_orogenic_belt_in_central_China
- https://tupa.gtk.fi/raportti/arkisto/m60_2003_1.pdf -> Conceptual Fuzzy Logic Prospectivity Analysis of the Kuusamo Area
- https://www.researchgate.net/publication/356508827_Geophysical-spatial_Data_Modeling_using_Fuzzy_Logic_Applied_to_Nova_Aurora_Iron_District_Northern_Minas_Gerais_State_Southeastern_Brazil
- https://www.researchgate.net/publication/356937528_Mineral_prospectivity_mapping_a_potential_technique_for_sustainable_mineral_exploration_and_mining_activities_-_a_case_study_using_the_copper_deposits_of_the_Tagmout_basin_Morocco
Kanada
- http://www.geosciencebc.com/i/pdf/SummaryofActivities2015/SoA2015_Granek.pdf -> Advanced Geoscience Targeting via Focused Machine Learning Applied to the QUEST Project Dataset, British Columbia
- https://open.library.ubc.ca/soa/cIRcle/collections/ubctheses/24/items/1.0340340 -> Application of machine learning algorithms to mineral prospectivity mapping
- https://www.researchgate.net/publication/369599705_A_study_of_faults_in_the_Superior_province_of_Ontario_and_Quebec_using_the_random_forest_machine_learning_algorithm_spatial_relationship_to_gold_mines
- https://www.researchgate.net/publication/273176257_Data-_and_Knowledge_driven_mineral_prospectivity_maps_for_Canada's_North
- https://www.researchgate.net/publication/300153215_Data_mining_for_real_mining_A_robust_algorithm_for_prospectivity_mapping_with_uncertainties
- https://www.sciencedirect.com/science/article/pii/S1674987123002268 -> Development and application of feature engineered geological layers for ranking magmatic, volcanogenic, and orogenic system components in Archean greenstone belts
- https://qspace.library.queensu.ca/bitstream/handle/1974/28138/Cevik_Ilkay_S_202009_MASc.pdf?sequence=3&isAllowed=y -> MACHINE LEARNING ENHANCEMENTS FOR KNOWLEDGE DISCOVERY IN MINERAL EXPLORATION AND IMPROVED MINERAL RESOURCE CLASSIFICATION
- https://www.researchgate.net/publication/343511849_Identification_of_intrusive_lithologies_in_volcanic_terrains_in_British_Columbia_by_machine_learning_using_Random_Forests_the_value_of_using_a_soft_classifier
- https://www.researchgate.net/publication/365782501_Improving_Mineral_Prospectivity_Model_Generalization_An_Example_from_Orogenic_Gold_Mineralization_of_the_Sturgeon_Lake_Transect_Ontario_Canada
- https://www.researchgate.net/publication/348983384_Mineral_prospectivity_mapping_using_a_VNet_convolutional_neural_network
- corporate link
- https://www.researchgate.net/publication/369048379_Mineral_Prospectivity_Mapping_Using_Machine_Learning_Techniques_for_Gold_Exploration_in_the_Larder_Lake_Area_Ontario_Canada
- https://www.researchgate.net/publication/337167506_Orogenic_gold_prospectivity_mapping_using_machine_learning
- https://www.researchgate.net/publication/290509352_Precursors_predicted_by_artificial_neural_networks_for_mass_balance_calculations_Quantifying_hydrothermal_alteration_in_volcanic_rocks
- https://link.springer.com/article/10.1007/s11053-024-10369-7 -> Predictive Modeling of Canadian Carbonatite-Hosted REE +/− Nb Deposits
- https://www.sciencedirect.com/science/article/pii/S0098300422001406 -> Preliminary geological mapping with convolution neural network using statistical data augmentation on a 3D model
- https://www.researchgate.net/publication/352046255_Study_of_the_Influence_of_Non-Deposit_Locations_in_Data-Driven_Mineral_Prospectivity_Mapping_A_Case_Study_on_the_Iskut_Project_in_Northwestern_British_Columbia_Canada
- https://www.researchgate.net/publication/220164155_Support_vector_machine_A_tool_for_mapping_mineral_prospectivity
- https://www.researchgate.net/publication/348111963_Support_Vector_Machine_and_Artificial_Neural_Network_Modelling_of_Orogenic_Gold_Prospectivity_Mapping_in_the_Swayze_greenstone_belt_Ontario_Canada
- PhD thesis -> https://zone.biblio.laurentian.ca/bitstream/10219/3736/1/PhD%20Thesis%20Maepa_20210603.%281%29.pdf -> Exploration targeting for gold deposits using spatial data analytics, machine learning and deep transfer learning in the Swayze and Matheson greenstone belts, Ontario, Canada
- https://data.geology.gov.yk.ca/Reference/95936#InfoTab -> Updates to the Yukon Geological Survey's mineral potential mapping methodology
- http://www.geosciencebc.com/i/pdf/SummaryofActivities2015/SoA2015_Granek.pdf -> Advanced Geoscience Targeting via Focused Machine Learning Applied to the QUEST Project Dataset, British Columbia
Zentralafrika
- https://www.researchgate.net/publication/323452014_The_Utility_of_Machine_Learning_in_Identification_of_Key_Geophysical_and_Geochemical_Datasets_A_Case_Study_in_Lithological_Mapping_in_the_Central_African_Copper_Belt
- https://www.researchgate.net/publication/334436808_Lithological_Mapping_in_the_Central_African_Copper_Belt_using_Random_Forests_and_Clustering_Strategies_for_Optimised_Results
Chile
- https://www.researchgate.net/publication/341485750_Evaluation_of_random_forest-based_analysis_for_the_gypsum_distribution_in_the_Atacama_desert
China
- https://www.researchgate.net/publication/374968979_3D_cooperative_inversion_of_airborne_magnetic_and_gravity_gradient_data_using_deep_learning_techniques - 3D cooperative inversion of airborne magnetic and gravity gradient data using deep learning techniques [UNSEEN]
- https://www.researchgate.net/publication/369919958_3D_mineral_exploration_Cu-Zn_targeting_with_multi-source_geoscience_datasets_in_the_Weilasituo-bairendaba_district_Inner_Mongolia_China
- https://www.researchgate.net/publication/350817136_3D_Mineral_Prospectivity_Mapping_Based_on_Deep_Metallogenic_Prediction_Theory_A_Case_Study_of_the_Lala_Copper_Mine_Sichuan_China
- https://www.researchgate.net/publication/336771580_3D_Mineral_Prospectivity_Mapping_with_Random_Forests_A_Case_Study_of_Tongling_Anhui_China
- https://www.sciencedirect.com/science/article/pii/S0169136823005772 -> 3D mineral prospectivity modeling in the Sanshandao goldfield, China using the convolutional neural network with attention mechanism
- https://www.sciencedirect.com/science/article/pii/S0009281924001144 -> 3D mineral prospectivity modeling using deep adaptation network transfer learning: A case study of the Xiadian gold deposit, Eastern China
- https://www.sciencedirect.com/science/article/pii/S0009281924000497 -> 3D mineral prospectivity modeling using multi-scale 3D convolution neural network and spatial attention approaches
- https://www.researchgate.net/publication/366201930_3D_Quantitative_Metallogenic_Prediction_of_Indium-Rich_Ore_Bodies_in_the_Dulong_Sn-Zn_Polymetallic_Deposit_Yunnan_Province_SW_China
- https://www.researchgate.net/publication/329600793_A_combined_approach_using_spatially-weighted_principal_components_analysis_and_wavelet_transformation_for_geochemical_anomaly_mapping_in_the_Dashui_ore-concentration_district_Central_China
- https://www.researchgate.net/publication/349034539_A_Comparative_Study_of_Machine_Learning_Models_with_Hyperparameter_Optimization_Algorithm_for_Mapping_Mineral_Prospectivity
- https://www.researchgate.net/publication/354132594_A_Convolutional_Neural_Network_of_GoogLeNet_Applied_in_Mineral_Prospectivity_Prediction_Based_on_Multi-source_Geoinformation
- https://www.researchgate.net/publication/369865076_A_deep-learning-based_mineral_prospectivity_modeling_framework_and_workflow_in_prediction_of_porphyry-epithermal_mineralization_in_the_Duolong_Ore_District_Tibet
- https://www.researchgate.net/publication/374982967_A_Framework_for_Data-Driven_Mineral_Prospectivity_Mapping_with_Interpretable_Machine_Learning_and_Modulated_Predictive_Modeling
- https://www.sciencedirect.com/science/article/pii/S0169136824002026 -> A Global-Local collaborative approach to quantifying spatial non-stationarity in three-dimensional mineral prospectivity modeling
- https://link.springer.com/article/10.1007/s11053-024-10344-2 -> A Heterogeneous Graph Construction Method for Mineral Prospectivity Mapping [UNSEEN]
- https://www.researchgate.net/publication/353421842_A_hybrid_logistic_regression_gene_expression_programming_model_and_its_application_to_mineral_prospectivity_mapping
- https://www.researchgate.net/publication/375764940_A_lightweight_convolutional_neural_network_with_end-to-end_learning_for_three-dimensional_mineral_prospectivity_modeling_A_case_study_of_the_Sanhetun_Area_Heilongjiang_Province_Northeastern_China
- https://www.researchgate.net/publication/339821823_A_Monte_Carlo-based_framework_for_risk-return_analysis_in_mineral_prospectivity_mapping
- https://www.researchgate.net/publication/373715610_A_Multimodal_Learning_Framework_for_Comprehensive_3D_Mineral_Prospectivity_Modeling_with_Jointly_Learned_Structure-Fluid_Relationships
- https://www.sciencedirect.com/science/article/pii/S0169136824001343 -> A novel hybrid ensemble model for mineral prospectivity prediction: A case study in the Malipo W-Sn mineral district, Yunnan Province, China
- https://www.researchgate.net/publication/347344551_A_positive_and_unlabeled_learning_algorithm_for_mineral_prospectivity_mapping
- https://www.researchgate.net/publication/335036019_An_Autoencoder-Based_Dimensionality_Reduction_Algorithm_for_Intelligent_Clustering_of_Mineral_Deposit_Data
- https://www.researchgate.net/publication/363696083_An_Integrated_Framework_for_Data-Driven_Mineral_Prospectivity_Mapping_Using_Bagging-Based_Positive_Unlabeled_Learning_and_Bayesian_Cost-Sensitive_Logistic_Regression
- https://link.springer.com/article/10.1007/s11053-024-10349-x -> An Uncertainty-Quantification Machine Learning Framework for Data-Driven Three-Dimensional Mineral Prospectivity Mapping
- https://link.springer.com/article/10.1007/s11004-023-10076-8 - An Interpretable Graph Attention Network for Mineral Prospectivity Mapping
- https://www.researchgate.net/publication/332751556_Application_of_hierarchical_clustering_singularity_mapping_and_Kohonen_neural_network_to_identify_Ag-Au-Pb-Zn_polymetallic_mineralization_associated_geochemical_anomaly_in_Pangxidong_district
- https://www.mdpi.com/2075-163X/14/9/945 -> Application of Machine Learning to Characterize Metallogenic Potential Based on Trace Elements of Zircon: A Case Study of the Tethyan Domain
- https://www.researchgate.net/publication/339096362_Application_of_nonconventional_mineral_exploration_techniques_case_studies
- https://www.researchgate.net/publication/325702993_Assessment_of_Geochemical_Anomaly_Uncertainty_Through_Geostatistical_Simulation_and_Singularity_Analysis
- https://www.researchgate.net/publication/368586826_Bagging-based_Positive-Unlabeled_Data_Learning_Algorithm_with_Base_Learners_Random_Forest_and_XGBoost_for_3D_Exploration_Targeting_in_the_Kalatongke_District_Xinjiang_China
- https://link.springer.com/article/10.1007/s11004-024-10153-6 -> Causal Discovery and Deep Learning Algorithms for Detecting Geochemical Patterns Associated with Gold-Polymetallic Mineralization: A Case Study of the Edongnan Region [UNSEEN]
- https://www.sciencedirect.com/science/article/pii/S0169136824001409 -> CNN-Transformers for mineral prospectivity mapping in the Maodeng–Baiyinchagan area, Southern Great Xing'an Range
- https://www.researchgate.net/publication/347079505_Convolutional_neural_network_and_transfer_learning_based_mineral_prospectivity_modeling_for_geochemical_exploration_of_Au_mineralization_within_the_Guandian-Zhangbaling_area_Anhui_Province_China
- https://www.researchgate.net/publication/352703015_Data-driven_based_logistic_function_and_prediction-area_plot_for_mineral_prospectivity_mapping_a_case_study_from_the_eastern_margin_of_Qinling_orogenic_belt_central_China
- https://www.sciencedirect.com/science/article/abs/pii/S0012825218306123 -> Deep learning and its application in geochemical mapping
- https://www.frontiersin.org/articles/10.3389/feart.2024.1308426/full -> Deep gold prospectivity modeling in the Jiaojia gold belt, Jiaodong Peninsula, eastern China using machine learning of geometric and geodynamic variables
- https://www.researchgate.net/publication/352893038_Detection_of_geochemical_anomalies_related_to_mineralization_using_the_GANomaly_network
- https://www.researchgate.net/publication/357685352_Determination_of_Predictive_Variables_in_Mineral_Prospectivity_Mapping_Using_Supervised_and_Unsupervised_Methods
- https://www.sciencedirect.com/science/article/abs/pii/S0375674221001370 -> Distinguishing IOCG and IOA deposits via random forest algorithm based on magnetite composition
- https://www.researchgate.net/publication/340401748_Effects_of_Random_Negative_Training_Samples_on_Mineral_Prospectivity_Mapping
- https://www.researchgate.net/publication/360333702_Ensemble_learning_models_with_a_Bayesian_optimization_algorithm_for_mineral_prospectivity_mapping
- https://www.researchgate.net/publication/267927676_Evaluation_of_uncertainty_in_mineral_prospectivity_mapping_due_to_missing_evidence_A_case_study_with_skarn-type_Fe_deposits_in_Southwestern_Fujian_Province_China
- https://www.mdpi.com/2075-163X/14/5/492 ->Exploration Vectors and Indicators Extracted by Factor Analysis and Association Rule Algorithms at the Lintan Carlin-Type Gold Deposit, Youjiang Basin, China
- https://www.researchgate.net/publication/379852209_Fractal-Based_Multi-Criteria_Feature_Selection_to_Enhance_Predictive_Capability_of_AI-Driven_Mineral_Prospectivity_Mapping
- https://www.researchgate.net/publication/338789096_From_2D_to_3D_Modeling_of_Mineral_Prospectivity_Using_Multi-source_Geoscience_Datasets_Wulong_Gold_District_China
- https://www.researchgate.net/publication/359714254_Geochemical_characterization_of_the_Central_Mineral_Belt_U_Cu_Mo_V_mineralization_Labrador_Canada_Application_of_unsupervised_machine-learning_for_evaluation_of_IOCG_and_affiliated_mineral_potential
- https://www.researchgate.net/publication/350788828_Geochemically_Constrained_Prospectivity_Mapping_Aided_by_Unsupervised_Cluster_Analysis
- https://www.researchgate.net/publication/267927506_GIS-based_mineral_potential_modeling_by_advanced_spatial_analytical_methods_in_the_southeastern_Yunnan_mineral_district_China
- https://www.researchgate.net/publication/380190183_Geologically_Constrained_Convolutional_Neural_Network_for_Mineral_Prospectivity_Mapping
- https://www.researchgate.net/publication/332997161_GNER_A_Generative_Model_for_Geological_Named_Entity_Recognition_Without_Labeled_Data_Using_Deep_Learning
- https://www.researchgate.net/publication/307011381_Identification_and_mapping_of_geochemical_patterns_and_their_significance_for_regional_metallogeny_in_the_southern_Sanjiang_China
- https://link.springer.com/article/10.1007/s11053-024-10334-4 -> Identification of Geochemical Anomalies Using an End-to-End Transformer
- https://www.researchgate.net/publication/359627130_Identification_of_ore-finding_targets_using_the_anomaly_components_of_ore-forming_element_associations_extracted_by_SVD_and_PCA_in_the_Jiaodong_gold_cluster_area_Eastern_China
- https://www.researchgate.net/publication/282621670_Identifying_geochemical_anomalies_associated_with_Au-Cu_mineralization_using_multifractal_and_artificial_neural_network_models_in_the_Ningqiang_district_Shaanxi_China
- https://www.sciencedirect.com/science/article/abs/pii/S0375674224000943 -> Integrate physics-driven dynamics simulation with data-driven machine learning to predict potential targets in maturely explored orefields: A case study in Tongguangshan orefield, Tongling , China
- https://www.researchgate.net/publication/329299202_Integrating_sequential_indicator_simulation_and_singularity_analysis_to_analyze_uncertainty_of_geochemical_anomaly_for_exploration_targeting_of_tungsten_polymetallic_mineralization_Nanling_belt_South_
- https://www.sciencedirect.com/science/article/abs/pii/S0883292724001987 -> Integrating soil geochemistry and machine learning for enhanced mineral exploration at the dayu gold deposit, south China block
- https://www.mdpi.com/2071-1050/15/13/10269 -> Intelligent Identification and Prediction Mineral Resources Deposit Based on Deep Learning
- https://link.springer.com/article/10.1007/s11053-024-10396-4 -> Interpretable SHAP Model Combining Meta-learning and Vision Transformer for Lithology Classification Using Limited and Unbalanced Drilling Data in Well Logging
- https://www.researchgate.net/publication/358555996_Learning_3D_mineral_prospectivity_from_3D_geological_models_using_convolutional_neural_networks_Application_to_a_structure-controlled_hydrothermal_gold_deposit
- https://www.researchgate.net/publication/352476625_Machine_Learning-Based_3D_Modeling_of_Mineral_Prospectivity_Mapping_in_the_Anqing_Orefield_Eastern_China
- https://www.researchgate.net/publication/331575655_Mapping_Geochemical_Anomalies_Through_Integrating_Random_Forest_and_Metric_Learning_Methods
- https://www.researchgate.net/publication/229399579_Mapping_geochemical_singularity_using_multifractal_analysis_Application_to_anomaly_definition_on_stream_sediments_data_from_Funin_Sheet_Yunnan_China
- https://www.researchgate.net/publication/328255422_Mapping_mineral_prospectivity_through_big_data_analytics_and_a_deep_learning_algorithm
- https://www.researchgate.net/publication/334106787_Mapping_Mineral_Prospectivity_via_Semi-supervised_Random_Forest
- https://www.researchgate.net/publication/236270466_Mapping_of_district-scale_potential_targets_using_fractal_models
- https://www.researchgate.net/publication/357584076_Mapping_prospectivity_for_regolith-hosted_REE_deposits_via_convolutional_neural_network_with_generative_adversarial_network_augmented_data
- https://www.researchgate.net/publication/328623280_Maximum_Entropy_and_Random_Forest_Modeling_of_Mineral_Potential_Analysis_of_Gold_Prospectivity_in_the_Hezuo-Meiwu_District_West_Qinling_Orogen_China
- https://www.sciencedirect.com/science/article/pii/S016913682400163X -> Metallogenic prediction based on fractal theory and machine learning in Duobaoshan Area, Heilongjiang Province
- https://www.sciencedirect.com/science/article/pii/S0169136824003810 -> Mineral prospectivity mapping susceptibility evaluation based on interpretable ensemble learning
- https://link.springer.com/article/10.1007/s11053-024-10386-6 -> Mineral Prospectivity Mapping Based on Spatial Feature Classification with Geological Map Knowledge Graph Embedding: Case Study of Gold Ore Prediction at Wulonggou, Qinghai Provinc
- https://www.researchgate.net/publication/235443301_Mineral_potential_mapping_in_a_frontier_region
- https://www.researchgate.net/publication/235443302_Mineral_potential_mapping_in_frontier_regions_A_Mongolian_case_study
- https://www.researchgate.net/publication/369104190_Mineral_Prospectivity_Mapping_Using_Attention-based_Convolutional_Neural_Network
- https://www.nature.com/articles/s41598-024-73357-0 -> Mineral prospectivity prediction based on convolutional neural network and ensemble learning
- https://www.researchgate.net/publication/329037175_Mineral_prospectivity_analysis_for_BIF_iron_deposits_A_case_study_in_the_Anshan-Benxi_area_Liaoning_province_North-East_China
- https://link.springer.com/article/10.1007/s11053-024-10335-3 -> Mineral Prospectivity Prediction Based on Self-Supervised Contrastive Learning and Geochemical Data: A Case Study of the Gold Deposit in the Malanyu District, Hebei Province, China [USEEN]
- https://www.researchgate.net/publication/377694139_Manganese_mineral_prospectivity_based_on_deep_convolutional_neural_networks_in_Songtao_of_northeastern_Guizhou
- https://www.researchgate.net/publication/ 351649498_Mineral_Prospectivity_Mapping_based_on_Isolation_Forest_and_Random_Forest_Implication_for_the_Existence_of_Spatial_Signature_of_Mineralization_in_Outliers
- https://www.researchgate.net/publication/358528670_Mineral_Prospectivity_Mapping_Based_on_Wavelet_Neural_Network_and_Monte_Carlo_Simulations_in_the_Nanling_W-Sn_Metallogenic_Province
- https://www.researchgate.net/publication/352983697_Mineral_prospectivity_mapping_by_deep_learning_method_in_Yawan-Daqiao_area_Gansu
- https://www.researchgate.net/publication/367106018_Mineral_Prospectivity_Mapping_of_Porphyry_Copper_Deposits_Based_on_Remote_Sensing_Imagery_and_Geochemical_Data_in_the_Duolong_Ore_District_Tibet - Mineral Prospectivity Mapping of Porphyry Copper Deposits Based on Remote Sensing Imagery and Geochemical Data in the Duolong Ore District, Tibet
- https://www.researchgate.net/publication/355749736_Mineral_prospectivity_mapping_using_a_joint_singularity-based_weighting_method_and_long_short-term_memory_network
- https://www.researchgate.net/publication/369104190_Mineral_Prospectivity_Mapping_Using_Attention-based_Convolutional_Neural_Network
- https://www.researchgate.net/publication/365434839_Mineral_Prospectivity_Mapping_Using_Deep_Self-Attention_Model
- https://www.researchgate.net/publication/379674196_Mineral_prospectivity_mapping_using_knowledge_embedding_and_explainable_ensemble_learning_A_case_study_of_the_Keeryin_ore_concentration_in_Sichuan_China
- https://www.researchgate.net/publication/350817877_Mineral_Prospectivity_Prediction_via_Convolutional_Neural_Networks_Based_on_Geological_Big_Data
- https://www.researchgate.net/publication/338871759_Modeling-based_mineral_system_approach_to_prospectivity_mapping_of_stratabound_hydrothermal_deposits_A_case_study_of_MVT_Pb-Zn_deposits_in_the_Huayuan_area_northwestern_Hunan_Province_China
- https://www.sciencedirect.com/science/article/pii/S0169136824003172 -> New insights into the metallogenic genesis of the Xiadian Au deposit, Jiaodong Peninsula, Eastern China: Constraints from integrated rutile in-situ geochemical analysis and machine learning discrimination
- https://www.researchgate.net/publication/332547136_Prospectivity_Mapping_for_Porphyry_Cu-Mo_Mineralization_in_the_Eastern_Tianshan_Xinjiang_Northwestern_China
- https://www.sciencedirect.com/science/article/pii/S0169136824001823 -> Quantitative prediction methods and applications of digital ore deposit models
- https://www.researchgate.net/publication/344303914_Random-Drop_Data_Augmentation_of_Deep_Convolutional_Neural_Network_for_Mineral_Prospectivity_Mapping
- https://www.researchgate.net/publication/371044606_Supervised_Mineral_Prospectivity_Mapping_via_Class-Balanced_Focal_Loss_Function_on_Imbalanced_Geoscience_DatasetsSupervised Mineral Prospectivity Mapping via Class-Balanced Focal Loss Function on Imbalanced Geoscience Datasets
- https://www.researchgate.net/publication/361520562_Recognizing_Multivariate_Geochemical_Anomalies_Related_to_Mineralization_by_Using_Deep_Unsupervised_Graph_Learning
- https://www.sciencedirect.com/science/article/pii/S0169136824003937 -> Semi-supervised graph convolutional networks for integrating continuous and binary evidential layers for mineral exploration targeting
- https://www.researchgate.net/publication/371044606_Supervised_Mineral_Prospectivity_Mapping_via_Class-Balanced_Focal_Loss_Function_on_Imbalanced_Geoscience_Datasets
- https://www.researchgate.net/publication/360028637_Three-Dimensional_Mineral_Prospectivity_Mapping_by_XGBoost_Modeling_A_Case_Study_of_the_Lannigou_Gold_Deposit_China
- https://link.springer.com/article/10.1007/s11053-024-10387-5 - Toward Data-Driven Mineral Prospectivity Mapping from Remote Sensing Data Using Deep Forest Predictive Model
- https://www.researchgate.net/publication/361589587_Unlabeled_Sample_Selection_for_Mineral_Prospectivity_Mapping_by_Semi-supervised_Support_Vector_Machine
- https://www.researchgate.net/publication/343515866_Using_deep_variational_autoencoder_networks_for_recognizing_geochemical_anomalies
- https://link.springer.com/article/10.1007/s11004-024-10151-8 -> Using Three-dimensional Modeling and Random Forests to Predict Deep Ore Potentials: A Case Study on Xiongcun Porphyry Copper–Gold Deposit in Tibet, China
- https://www.researchgate.net/publication/361194407_Visual_Interpretable_Deep_Learning_Algorithm_for_Geochemical_Anomaly_Recognition
Ägypten
- https://www.researchgate.net/publication/340084035_Reliability_of_using_ASTER_data_in_lithologic_mapping_and_alteration_mineral_detection_of_the_basement_complex_of_West_Berenice_Southeastern_Desert_Egypt
England
- https://www.researchgate.net/publication/342339753_A_machine_learning_approach_to_tungsten_prospectivity_modelling_using_knowledge-driven_feature_extraction_and_model_confidence
- https://www.researchgate.net/project/Enhancing-the-Geological-Understanding-of-SW-England-Using-Machine-Learning-Algorithms
Eritrea
- https://www.researchgate.net/publication/349158008_Mapping_gold_mineral_prospectivity_based_on_weights_of_evidence_method_in_southeast_Asmara_Eritrea
Finnland
- https://www.researchgate.net/publication/360661926_Target-scale_prospectivity_modeling_for_gold_mineralization_within_the_Rajapalot_Au-Co_project_area_in_northern_Fennoscandian_Shield_Finland_Part_2_Application_of_self-organizing_maps_and_artificial_n
- https://www.sciencedirect.com/science/article/pii/S0169136824004037 -> Addressing imbalanced data for machine learning based mineral prospectivity mapping
Finnland
- https://publications.csiro.au/publications/#publication/PIcsiro:EP146125/SQmineral%20prospectivity/RP1/RS50/RORECENT/STsearch-by-keyword/LISEA/RI12/RT26 -> A novel spatial analysis approach for assessing regional-scale mineral prospectivity In Northern Finland
- https://www.researchgate.net/publication/332352805_Boosting_for_Mineral_Prospectivity_Modeling_A_New_GIS_Toolbox
- https://www.researchgate.net/publication/324517415_Can_boosting_boost_minimal_invasive_exploration_targeting
- https://www.researchgate.net/publication/248955109_Combined_conceptualempirical_prospectivity_mapping_for_orogenic_gold_in_the_northern_Fennoscandian_Shield_Finland
- https://www.researchgate.net/publication/283451958_Data-driven_logistic-based_weighting_of_geochemical_and_geological_evidence_layers_in_mineral_prospectivity_mapping
- https://www.researchgate.net/publication/320280611_Evaluation_of_boosting_algorithms_for_prospectivity_mapping
- https://www.researchgate.net/publication/298297988_Fuzzy_logic_data_integration_technique_used_as_a_nickel_exploration_tool
- https://www.researchgate.net/publication/259372191_Gravity_data_in_regional_scale_3D_and_gold_prospectivity_modelling_-_example_from_the_Central_Lapland_greenstone_belt_northern_Finland
- https://www.researchgate.net/publication/315381587_Introduction_to_the_special_issue_GIS-based_mineral_potential_targeting
- https://www.researchgate.net/publication/320709733_Knowledge-driven_prospectivity_model_for_Iron_oxide-Cu-Au_IOCG_deposits_in_northern_Finland
- https://tupa.gtk.fi/raportti/arkisto/57_2021.pdf -> Mineral Prospectivity and Exploration Targeting MinProXT 2021 Webinar - paper compilation
- https://tupa.gtk.fi/raportti/arkisto/29_2023.pdf -> Mineral Prospectivity and Exploration Targeting MinProXT 2022 Webinar - paper compilation
- https://www.researchgate.net/publication/312180531_Optimizing_a_Knowledge-driven_Prospectivity_Model_for_Gold_Deposits_Within_Perapohja_Belt_Northern_Finland
- https://www.researchgate.net/publication/320703774_Prospectivity_Models_for_Volcanogenic_Massive_Sulfide_Deposits_VMS_in_Northern_Finland
- https://www.researchgate.net/publication/280875727_Receiver_operating_characteristics_ROC_as_validation_tool_for_prospectivity_models_-_A_magmatic_Ni-Cu_case_study_from_the_Central_Lapland_Greenstone_Belt_Northern_Finland
- https://www.researchgate.net/publication/332298116_Scalability_of_the_Mineral_Prospectivity_Modelling_-_An_orogenic_gold_case_study_from_northern_Finland
- https://www.researchgate.net/publication/251786465_Spatial_data_analysis_as_a_tool_for_mineral_prospectivity_mapping
- https://www.researchgate.net/publication/331006924_Unsupervised_clustering_and_empirical_fuzzy_memberships_for_mineral_prospectivity_modelling
Ghana
- https://www.researchgate.net/publication/227256267_Application_of_Data-Driven_Evidential_Belief_Functions_to_Prospectivity_Mapping_for_Aquamarine-Bearing_Pegmatites_Lundazi_District_Zambia
- https://www.researchgate.net/publication/226842511_Mapping_of_prospectivity_and_estimation_of_number_of_undiscovered_prospects_for_lode_gold_southwestern_Ashanti_Belt_Ghana
- https://www.researchgate.net/publication/233791624_Spatial_association_of_gold_deposits_with_remotely_-_sensed_faults_South_Ashanti_belt_Ghana
Grönland
- https://www.researchgate.net/publication/360970965_Identification_of_Radioactive_Mineralized_Lithology_and_Mineral_Prospectivity_Mapping_Based_on_Remote_Sensing_in_High-Latitude_Regions_A_Case_Study_on_the_Narsaq_Region_of_Greenland
Indien
- https://www.researchgate.net/publication/372636338_Unsupervised_machine_learning_based_prospectivity_analysis_of_NW_and_NE_India_for_carbonatite-alkaline_complex-related_REE_deposits
Indonesien
- https://www.researchgate.net/publication/263542819_Regional-Scale_Geothermal_Prospectivity_Mapping_in_West_Java_Indonesia_by_Data-driven_Evidential_Belief_Functions
Iran
- https://www.researchgate.net/publication/325697373_A_comparative_analysis_of_artificial_neural_network_ANN_wavelet_neural_network_WNN_and_support_vector_machine_SVM_data-driven_models_to_mineral_potential_mapping_for_copper_mineralizations_in_the_Shah
- https://www.researchgate.net/publication/358507255_A_Comparative_Study_of_Convolutional_Neural_Networks_and_Conventional_Machine_Learning_Models_for_Lithological_Mapping_Using_Remote_Sensing_Data
- https://www.researchgate.net/publication/351750324_A_data_augmentation_approach_to_XGboost-based_mineral_potential_mapping_An_example_of_carbonate-hosted_Zn_Pb_mineral_systems_of_Western_Iran
- https://www.researchgate.net/publication/336471932_A_knowledge-guided_fuzzy_inference_approach_for_integrating_geophysics_geochemistry_and_geology_data_in_deposit-scale_porphyry_copper_targeting_Saveh-Iran
- https://www.researchgate.net/publication/348500913_A_new_strategy_for_spatial_predictive_mapping_of_mineral_prospectivity
- https://www.researchgate.net/publication/348482539_A_new_strategy_for_spatial_predictive_mapping_of_mineral_prospectivity_Automated_hyperparameter_tuning_of_random_forest_approach
- https://www.researchgate.net/publication/352251016_A_simulation-based_framework_for_modulating_the_effects_of_subjectivity_in_greenfield_Mineral_Prospectivity_Mapping_with_geochemical_and_geological_data
- https://www.researchgate.net/publication/296638839_An_AHP-TOPSIS_Predictive_Model_for_District-Scale_Mapping_of_Porphyry_Cu-Au_Potential_A_Case_Study_from_Salafchegan_Area_Central_Iran
- https://www.researchgate.net/publication/278029106_Application_of_Discriminant_Analysis_and_Support_Vector_Machine_in_Mapping_Gold_Potential_Areas_for_Further_Drilling_in_the_Sari-Gunay_Gold_Deposit_NW_Iran
- https://www.researchgate.net/publication/220164381_Application_of_geochemical_zonality_coefficients_in_mineral_prospectivity_mapping
- https://www.researchgate.net/publication/330359897_Application_of_hybrid_AHP-TOPSIS_method_for_prospectivity_modeling_of_Cu_porphyry_in_Varzaghan_district_Iran
- https://www.researchgate.net/publication/356872819_Application_of_self-organizing_map_SOM_and_K-means_clustering_algorithms_for_portraying_geochemical_anomaly_patterns_in_Moalleman_district_NE_Iran
- https://www.researchgate.net/publication/258505300_Application_of_staged_factor_analysis_and_logistic_function_to_create_a_fuzzy_stream_sediment_geochemical_evidence_layer_for_mineral_prospectivity_mapping
- https://www.researchgate.net/publication/358567148_Applications_of_data_augmentation_in_mineral_prospectivity_prediction_based_on_convolutional_neural_networks
- https://www.researchgate.net/publication/353761696_Assessing_the_effects_of_mineral_systems-derived_exploration_targeting_criteria_for_Random_Forests-based_predictive_mapping_of_mineral_prospectivity_in_Ahar-Arasbaran_area_Iran
- https://www.researchgate.net/publication/270586282_Data-Driven_Index_Overlay_and_Boolean_Logic_Mineral_Prospectivity_Modeling_in_Greenfields_Exploration
- https://www.researchgate.net/publication/356660905_Deep_GMDH_Neural_Networks_for_Predictive_Mapping_of_Mineral_Prospectivity_in_Terrains_Hosting_Few_but_Large_Mineral_Deposits
- https://www.researchgate.net/publication/317240761_Enhancement_and_Mapping_of_Weak_Multivariate_Stream_Sediment_Geochemical_Anomalies_in_Ahar_Area_NW_Iran
- https://www.sciencedirect.com/science/article/pii/S0009281924001223 -> Enhancing training performance of convolutional neural network algorithm through an autoencoder-based unsupervised labeling framework for mineral exploration targeting
- https://www.researchgate.net/publication/356580903_Evidential_data_integration_to_produce_porphyry_Cu_prospectivity_map_using_a_combination_of_knowledge_and_data_driven_methods
- https://research-repository.uwa.edu.au/en/publications/exploration-feature-selection-applied-to-hybrid-data-integration-Exploration feature selection applied to hybrid data integrationmodeling: Targeting copper-gold potential in central
- https://www.researchgate.net/publication/333199619_Incorporation_of_principal_component_analysis_geostatistical_interpolation_approaches_and_frequency-space-based_models_for_portraying_the_Cu-Au_geochemical_prospects_in_the_Feizabad_district_NW_Iran
- https://www.researchgate.net/publication/351965039_Intelligent_geochemical_exploration_modeling_using_multiclass_support_vector_machine_and_integration_it_with_continuous_genetic_algorithm_in_Gonabad_region_Khorasan_Razavi_Iran
- https://www.researchgate.net/publication/310658663_Multifractal_interpolation_and_spectrum-area_fractal_modeling_of_stream_sediment_geochemical_data_Implications_for_mapping_exploration_targets
- https://www.researchgate.net/publication/267635150_Multivariate_regression_analysis_of_lithogeochemical_data_to_model_subsurface_mineralization_A_case_study_from_the_Sari_Gunay_epithermal_gold_deposit_NW_Iran
- https://www.researchgate.net/publication/330129457_Performance_evaluation_of_RBF-_and_SVM-based_machine_learning_algorithms_for_predictive_mineral_prospectivity_modeling_integration_of_S-A_multifractal_model_and_mineralization_controls
- https://www.researchgate.net/publication/353982380_Porphyry_Cu-Au_prospectivity_modelling_using_semi-supervised_learning_algorithm_in_Dehsalm_district_eastern_Iran_In_Farsi_with_extended_English_abstract
- https://www.researchgate.net/publication/320886789_Prospectivity_analysis_of_orogenic_gold_deposits_in_Saqez-Sardasht_Goldfield_Zagros_Orogen_Iran
- https://www.researchgate.net/publication/361529867_Prospectivity_mapping_of_orogenic_lode_gold_deposits_using_fuzzy_models_a_case_study_of_Saqqez_area_NW_of_Iran
- https://www.researchgate.net/publication/361717490_Quantifying_Uncertainties_Linked_to_the_Diversity_of_Mathematical_Frameworks_in_Knowledge-Driven_Mineral_Prospectivity_Mapping
- https://www.researchgate.net/publication/374730424_Recognition_of_mineralization-related_anomaly_patterns_through_an_autoencoder_neural_network_for_mineral_exploration_targeting
- https://www.researchgate.net/publication/349957803_Regional-Scale_Mineral_Prospectivity_Mapping_Support_Vector_Machines_and_an_Improved_Data-Driven_Multi-criteria_Decision-Making_Technique
- https://www.researchgate.net/publication/339153591_Sensitivity_analysis_of_prospectivity_modeling_to_evidence_maps_Enhancing_success_of_targeting_for_epithermal_gold_Takab_district_NW_Iran
- https://www.researchgate.net/publication/321076980_Spatial_analyses_of_exploration_evidence_data_to_model_skarn-type_copper_prospectivity_in_the_Varzaghan_district_NW_Iran
- https://www.researchgate.net/publication/304904242_Stepwise_regression_for_recognition_of_geochemical_anomalies_Case_study_in_Takab_area_NW_Iran
- https://www.researchgate.net/publication/350423220_Supervised_mineral_exploration_targeting_and_the_challenges_with_the_selection_of_deposit_and_non-deposit_sites_thereof
- https://www.sciencedirect.com/science/article/pii/S0009281924000801 -> Targeting porphyry Cu deposits in the Chahargonbad region of Iran: A joint application of deep belief networks and random forest techniques
- https://www.researchgate.net/publication/307874730_The_use_of_decision_tree_induction_and_artificial_neural_networks_for_recognizing_the_geochemical_distribution_patterns_of_LREE_in_the_Choghart_deposit_Central_Iran
- https://www.researchsquare.com/article/rs-4760956/v1 -> Uncertainty reduction with Hyperparameter Optimization in mineral prospectivity mapping: A Regularized Artificial Neural Network approach [UNSEEN]
Irland
- https://www.gsi.ie/en-ie/programmes-and-projects/tellus/activities/tellus-product-development/mineral-prospectivity/Pages/default.aspx - > NW Midlands Mineral Prospectivity Mapping
Indien
- https://www.researchgate.net/publication/226092981_A_Hybrid_Neuro-Fuzzy_Model_for_Mineral_Potential_Mapping
- https://www.researchgate.net/publication/225328359_A_Hybrid_Fuzzy_Weights-of-Evidence_Model_for_Mineral_Potential_Mapping
- https://www.researchgate.net/publication/227221497_Artificial_Neural_Networks_for_Mineral-Potential_Mapping_A_Case_Study_from_Aravalli_Province_Western_India
- https://www.researchgate.net/publication/222050039_Bayesian_network_classifiers_for_mineral_potential_mapping
- https://www.researchgate.net/publication/355397149_Gold_Prospectivity_Mapping_in_the_Sonakhan_Greenstone_Belt_Central_India_A_Knowledge-Driven_Guide_for_Target_Delineation_in_a_Region_of_Low_Exploration_Maturity
- https://www.researchgate.net/publication/272092276_Extended_Weights-of-Evidence_Modelling_for_Predictive_Mapping_of_Base_Metal_Deposit_Potential_in_Aravalli_Province_Western_India
- https://www.researchgate.net/publication/226193283_Knowledge-Driven_and_Data-Driven_Fuzzy_Models_for_Predictive_Mineral_Potential_Mapping
- https://www.researchgate.net/publication/238027981_SVM-based_base-metal_prospectivity_modeling_of_the_Aravalli_Orogen_Northwestern_India
Korea
- https://www.researchgate.net/publication/382131746_Domain_Adaptation_from_Drilling_to_Geophysical_Data_for_Mineral_Exploration
Norwegen
- https://www.mdpi.com/2075-163X/9/2/131/htm - Prospectivity Mapping of Mineral Deposits in Northern Norway Using Radial Basis Function Neural Networks
Südkorea
- https://www.researchgate.net/publication/221911782_Application_of_Artificial_Neural_Network_for_Mineral_Potential_Mapping
- https://www.researchgate.net/publication/359861043_Rock_Classification_in_a_Vanadiferous_Titanomagnetite_Deposit_Based_on_Supervised_Machine_Learning#fullTextFileContent Rock Classification in a Vanadiferous Titanomagnetite Deposit Based on Supervised Machine Learning
Phillipines
- https://www.researchgate.net/publication/359632307_A_Geologically_Constrained_Variational_Autoencoder_for_Mineral_Prospectivity_Mapping
- https://www.researchgate.net/publication/263174923_Application_of_Mineral_Exploration_Models_and_GIS_to_Generate_Mineral_Potential_Maps_as_Input_for_Optimum_Land-Use_Planning_in_the_Philippines
- https://www.researchgate.net/publication/267927677_Data-driven_predictive_mapping_of_gold_prospectivity_Baguio_district_Philippines_Application_of_Random_Forests_algorithm
- https://www.researchgate.net/publication/276271833_Data-Driven_Predictive_Modeling_of_Mineral_Prospectivity_Using_Random_Forests_A_Case_Study_in_Catanduanes_Island_Philippines
- https://www.researchgate.net/publication/209803275_Evidential_belief_functions_for_data-driven_geologically_constrained_mapping_of_gold_potential_Baguio_district_Philippines
- https://www.researchgate.net/publication/241001432_Geologically_Constrained_Probabilistic_Mapping_of_Gold_Potential_Baguio_District_Philippines
- https://www.researchgate.net/publication/263724277_Geologically_Constrained_Fuzzy_Mapping_of_Gold_Mineralization_Potential_Baguio_District_Philippines
- https://www.researchgate.net/publication/229641286_Improved_Wildcat_Modelling_of_Mineral_Prospectivity
- https://www.researchgate.net/publication/238447208_Logistic_Regression_for_Geologically_Constrained_Mapping_of_Gold_Potential_Baguio_District_Philippines
- https://www.researchgate.net/publication/248977334_Mineral_imaging_with_Landsat_TM_data_for_hydrothermal_alteration_mapping_in_heavily-vegetated_terrane
- https://www.researchgate.net/publication/356546133_Mineral_Prospectivity_Mapping_via_Gated_Recurrent_Unit_Model
- https://www.researchgate.net/publication/267640864_Random_forest_predictive_modeling_of_mineral_prospectivity_with_small_number_of_prospects_and_data_with_missing_values_in_Abra_Philippines
- https://www.researchgate.net/publication/3931975_Remote_detection_of_vegetation_stress_for_mineral_exploration
- https://www.researchgate.net/publication/263422015_Where_Are_Porphyry_Copper_Deposits_Spatially_Localized_A_Case_Study_in_Benguet_Province_Philippines
- https://www.researchgate.net/publication/233488614_Wildcat_mapping_of_gold_potential_Baguio_District_Philippines
- https://www.researchgate.net/publication/226982180_Weights_of_Evidence_Modeling_of_Mineral_Potential_A_Case_Study_Using_Small_Number_of_Prospects_Abra_Philippines
Russland
- https://www.researchgate.net/publication/358431343_Application_of_Maximum_Entropy_for_Mineral_Prospectivity_Mapping_in_Heavily_Vegetated_Areas_of_Greater_Kurile_Chain_with_Landsat_8_Data
- https://www.researchgate.net/publication/354000754_Mineral_Prospectivity_Mapping_for_Forecasting_Gold_Deposits_in_the_Central_Kolyma_Region_North-East_Russia
Südafrika
- https://www.researchgate.net/publication/359294267_Data-driven_multi-index_overlay_gold_prospectivity_mapping_using_geophysical_and_remote_sensing_datasets
- https://link.springer.com/article/10.1007/s11053-024-10390-w -> Mineral Reconnaissance Through Scientific Consensus: First National Prospectivity Maps for PGE–Ni–Cu–Cr and Witwatersrand-type Au Deposits in South Africa
- https://www.researchgate.net/publication/361526053_Mineral_prospectivity_mapping_of_gold-base_metal_mineralisation_in_the_Sabie-Pilgrim%27s_Rest_area_Mpumalanga_Province_South_Africa
- https://www.researchgate.net/publication/264296137_PREDICTIVE_BEDROCK_AND_MINERAL_PROSPECTIVITY_MAPPING_IN_THE_GIYANI_GREENSTONE_BELT_SOUTH_AFRICA
- https://www.researchgate.net/publication/268196204_Predictive_mapping_of_prospectivity_for_orogenic_gold_Giyani_greenstone_belt_South_Africa
Spanien
- https://www.researchgate.net/publication/225656353_Deriving_Optimal_Exploration_Target_Zones_on_Mineral_Prospectivity_Maps
- https://www.researchgate.net/publication/222198648_Knowledge-guided_data-driven_evidential_belief_modeling_of_mineral_prospectivity_in_Cabo_de_Gata_SE_Spain
- https://www.researchgate.net/publication/356639977_Machine_learning_models_for_Hg_prospecting_in_the_Almaden_mining_district
- https://www.researchgate.net/publication/43165602_Methodology_for_deriving_optimal_exploration_target_zones
- https://www.researchgate.net/publication/263542579_Optimal_Exploration_Target_Zones
- https://www.researchgate.net/publication/222892103_Optimal_field_sampling_for_targeting_minerals_using_hyperspectral_data
- https://www.researchgate.net/publication/271671416_Predictive_modelling_of_gold_potential_with_the_integration_of_multisource_information_based_on_random_forest_a_case_study_on_the_Rodalquilar_area_Southern_Spain
Sudan
- https://link.springer.com/article/10.1007/s11053-024-10387-5 -> Toward Data-Driven Mineral Prospectivity Mapping from Remote Sensing Data Using Deep Forest Predictive Model [UNSEEN]
Schweden
- https://www.researchgate.net/publication/259128115_Biogeochemical_expression_of_rare_earth_element_and_zirconium_mineralization_at_Norra_Karr_Southern_Sweden
- https://www.researchgate.net/publication/260086862_COMPARISION_OF_VMS_PROSPECTIVITY_MAPPING_BY_EBF_AND_WOFE_MODELING_THE_SKELLEFTE_DISTRICT_SWEDEN
- https://www.researchgate.net/publication/336086368_GIS-based_mineral_system_approach_for_prospectivity_mapping_of_iron-oxide_apatite-bearing_mineralisation_in_Bergslagen_Sweden
- https://www.researchgate.net/publication/229347041_Predictive_mapping_of_prospectivity_and_quantitative_estimation_of_undiscovered_VMS_deposits_in_Skellefte_district_Sweden
- https://www.researchgate.net/publication/260086947_PRELIMINARY_GIS-BASED_ANALYSIS_OF_REGIONAL-SCALE_VMS_PROSPECTIVITY_IN_THE_SKELLEFTE_REGION_SWEDEN
Tansania
- https://www.sciencedirect.com/science/article/pii/S2666261224000270 -> Machine learning based prospect targeting: A case of gold occurrence in central parts of Tanzania, East Africa
Uganda
- https://www.researchgate.net/publication/242339962_Predictive_mapping_for_orogenic_gold_prospectivity_in_Uganda
- https://www.researchgate.net/publication/262566098_Predictive_Mapping_of_Prospectivity_for_Orogenic_Gold_in_Uganda
- https://www.researchgate.net/publication/381219015_Machine_Learning_Application_in_Predictive_Mineral_Mapping_of_Southwestern_Uganda_Leveraging_Airborne_Magnetic_Radiometric_and_Electromagnetic_Data
Vereinigtes Königreich
- https://www.researchgate.net/publication/383580839_Improved_mineral_prospectivity_mapping_using_graph_neural_networks
USA
- https://www.researchgate.net/publication/338663292_A_Predictive_Geospatial_Exploration_Model_for_Mississippi_Valley_Type_Pb-Zn_Mineralization_in_the_Southeast_Missouri_Lead_District
- https://www.sciencedirect.com/science/article/abs/pii/S0375674218300396?via%3Dihub -> Machine learning strategies for classification and prediction of alteration facies: Examples from the Rosemont Cu-Mo-Ag skarn deposit, SE Tucson Arizona
- [presentation of the above!] https://www.slideshare.net/JuanCarlosOrdezCalde/geology-chemostratigraphy-and-alteration-geochemistry-of-the-rosemont-cumoag-skarn-deposit-southern-arizona
- https://github.com/rohitash-chandra/research/blob/master/presentations/CSIRO%20Minerals-Seminar-September2022.pdf -> Machine Learning for Mineral Exploration: A Data Odyssey
- Video https://www.youtube.com/watch?v=zhXuPQy7mk8&t=561s -> Talks about using plate subduction and associated statistics via GPlates
Sambia
- https://www.researchgate.net/publication/263542565_APPLICATION_OF_REMOTE_SENSING_AND_SPATIAL_DATA_INTEGRATION_TO_PREDICT_POTENTIAL_ZONES_FOR_AQUAMARINE-BEARING_PEGMATITES_LUNDAZI_AREA_NORTHEAST_ZAMBIA
- https://www.researchgate.net/publication/264041472_Geological_and_Mineral_Potential_Mapping_by_Geoscience_Data_Integration
Simbabwe
- https://www.researchgate.net/publication/260792212_Nickel_Sulphide_Deposits_in_Archaean_Greenstone_Belts_in_Zimbabwe_Review_and_Prospectivity_Analysis
GENERAL PAPERS
Übersichten
- https://www.sciencedirect.com/science/article/pii/S2772883824000347 -> A review on the applications of airborne geophysical and remote sensing datasets in epithermal gold mineralisation mapping
- https://www.researchgate.net/publication/353530416_A_Systematic_Review_on_the_Application_of_Machine_Learning_in_Exploiting_Mineralogical_Data_in_Mining_and_Mineral_Industry
- https://www.researchgate.net/publication/365777421_Computer_Vision_and_Pattern_Recognition_for_the_Analysis_of_2D3D_Remote_Sensing_Data_in_Geoscience_A_Survey - Computer Vision and Pattern Recognition for the Analysis of 2D/3D Remote Sensing Data in Geoscience: A Survey
- https://www.researchgate.net/publication/352104303_Deep_Learning_for_Geophysics_Current_and_Future_Trends
- https://www.proquest.com/openview/e7bec6c8ee50183b5049516b000d4f5c/1?pq-origsite=gscholar&cbl=18750&diss=y -> Probabilistic Knowledge-Guided Machine Learning in Engineering and Geoscience Systems
- KGMLPrescribedFires repository for one paper / part of above dissertation
Einlagen
- https://pubs.er.usgs.gov/publication/ofr20211049 -> Deposit Classification Scheme for the Critical Minerals Mapping Initiative Global Geochemical Database
ESG
- https://www.escubed.org/journals/earth-science-systems-and-society/articles/10.3389/esss.2024.10109/full -> Geospatial Data and Deep Learning Expose ESG Risks to Critical Raw Materials Supply: The Case of Lithium
Geochemie
Causal Discovery and Deep Learning Algorithms for Detecting Geochemical Patterns Associated with Gold-Polymetallic Mineralization: A Case Study of the Edongnan Region
- https://link.springer.com/article/10.1007/s11053-024-10408-3 -> A New Sphalerite Thermometer Based on Machine Learning with Trace Element Geochemistry
- https://www.researchgate.net/publication/378150628_A_SMOTified_extreme_learning_machine_for_identifying_mineralization_anomalies_from_geochemical_exploration_data_a_case_study_from_the_Yeniugou_area_Xinjiang_China A SMOTified extreme learning machine for identifying mineralization anomalies from geochemical exploration data
- https://ui.adsabs.harvard.edu/abs/2018EGUGA..20.4169R/abstract -> Accelerating minerals exploration with in-field characterisation, sample tracking and active machine learning
- https://www.researchgate.net/publication/375509344_Alteration_assemblage_characterization_using_machine_learning_applied_to_high_resolution_drill-core_images_hyperspectral_data_and_geochemistry
- https://qspace.library.queensu.ca/items/38f52d19-609d-4916-bcd0-3ce20675dee3/full - > Application of Computational Methods to Data Integration and Geoscientific Problems in Mineral Exploration and Mining
- https://www.sciencedirect.com/science/article/pii/S0169136822005509?dgcid=rss_sd_all -> Applying neural networks-based modelling to the prediction of mineralization: A case-study using the Western Australian Geochemistry (WACHEM) database
- https://www.sciencedirect.com/science/article/pii/S0169136824002099 -> Development of a machine learning model to classify mineral deposits using sphalerite chemistry and mineral assemblages
- https://www.sciencedirect.com/science/article/pii/S0169136824002403 -> Discrimination of deposit types using magnetite geochemistry based on machine learning
- https://www.researchgate.net/publication/302595237_A_machine_learning_approach_to_geochemical_mapping
- https://www.researchgate.net/publication/369300132_DEEP-LEARNING_IDENTIFICATION_OF_ANOMALOUS_DATA_IN_GEOCHEMICAL_DATASETS_DEEP-LEARNING_IDENTIFICATION_OF_ANOMALOUS_DATA_IN_GEOCHEMICAL_DATASETS
- https://www.researchgate.net/publication/378549920_Denoising_of_geochemical_data_using_deep_learning-Implications_for_regional_surveys -> Denoising of Geochemical Data using Deep Learning–Implications for Regional Surveys]
- https://www.researchgate.net/publication/368489689_Discrimination_of_Pb-Zn_deposit_types_using_sphalerite_geochemistry_New_insights_from_machine_learning_algorithm
- https://www.researchgate.net/publication/381369176_Effectiveness_of_LOF_iForest_and_OCSVM_in_detecting_anomalies_in_stream_sediment_geochemical_data#:~:text=LOF%20outperformed%20iForest%20and%20OCSVM,patterns%20in%20the%20iForest%20map
- https://dzkjqb.cug.edu.cn/en/article/doi/10.19509/j.cnki.dzkq.tb20220423 -> Gaussian mixture model in geochemical anomaly delineation of stream sediments: A case study of Xupu, Hunan Province [UNSEEN ]
- https://www.sciencedirect.com/science/article/pii/S0883292724002427 -> Geologically constrained unsupervised dual-branch deep learning algorithm for geochemical anomalies identification
- https://www.researchgate.net/publication/365953549_Incorporating_the_genetic_and_firefly_optimization_algorithms_into_K-means_clustering_method_for_detection_of_porphyry_and_skarn_Cu-related_geochemical_footprints_in_Baft_district_Kerman_Iran
- https://www.researchgate.net/publication/369768936_Infomax-based_deep_autoencoder_network_for_recognition_of_multi-element_geochemical_anomalies_linked_to_mineralization -> Paywalled
- https://www.sciencedirect.com/science/article/abs/pii/S0098300424001626 -> Local phase-constrained convolutional autoencoder network for identifying multivariate geochemical anomalies
- https://www.researchgate.net/publication/354564681_Machine_Learning_for_Identification_of_Primary_Water_Concentrations_in_Mantle_Pyroxene
- https://www.researchgate.net/publication/366210211_Machine_Learning_Prediction_of_Ore_Deposit_Genetic_Type_Using_Magnetite_Geochemistry
- https://link.springer.com/article/10.1007/s42461-024-01013-2 -> NIR-Spectroscopy and Machine Learning Models to Pre-concentrate Copper Hosted Within Sedimentary Rocks[UNSEEN]
- https://www.researchsquare.com/article/rs-4106957/v1 -> Multi-element geochemical anomaly recognition applying geologically-constrained convolutional deep learning algorithm with Butterworth filtering
- https://www.researchgate.net/publication/369241349_Quantifying_continental_crust_thickness_using_the_machine_learning_method
- https://link.springer.com/article/10.1007/s11004-024-10158-1 -> Spatial-Spectrum Two-Branch Model Based on a Superpixel Graph Convolutional Network and 1DCNN for Geochemical Anomaly Identification
- https://www.researchgate.net/publication/334651800_Using_machine_learning_to_estimate_a_key_missing_geochemical_variable_in_mining_exploration_Application_of_the_Random_Forest_algorithm_to_multi-sensor_core_logging_data
Apatite
- https://www.researchgate.net/publication/377892369_Apatite_trace_element_composition_as_an_indicator_of_ore_deposit_types_A_machine_learning_approachApatite trace element composition as an indicator of ore deposit types: A machine learning approach
- https://www.researchgate.net/publication/369729999_Visual_Interpretation_of_Machine_Learning_Genetical_Classification_of_Apatite_from_Various_Ore_Sources
Geologie
Änderung
- https://ieeexplore.ieee.org/abstract/document/10544529 -> Remote sensing data processing using convolutional neural networks for mapping alteration zones [UNSEEN]
Tiefe
- https://www.researchgate.net/publication/332263305_A_speedy_update_on_machine_learning_applied_to_bedrock_mapping_using_geochemistry_or_geophysics_examples_from_the_Pacific_Rim_and_nearby
- https://eprints.utas.edu.au/32368/ - thesis paper update
- https://www.frontiersin.org/journals/earth-science/articles/10.3389/feart.2024.1407173/full -> Deep learning for geological mapping in the overburden area
- https://www.researchgate.net/publication/280038632_Estimating_the_fill_thickness_and_bedrock_topography_in_intermontane_valleys_using_artificial_neural_networks_-_Supporting_Information
- https://www.researchgate.net/publication/311783770_Mapping_the_global_depth_to_bedrock_for_land_surface_modeling
- https://www.researchgate.net/publication/379813337_Contribution_to_advancing_aquifer_geometric_mapping_using_machine_learning_and_deep_learning_techniques_a_case_study_of_the_AL_Haouz-Mejjate_aquifer_Marrakech_Morocco
- https://www.linkedin.com/pulse/depth-basement-modelling-machine-learning-perspective-n5gyc/?trackingId=qFSktvVPUiSa2V2nlmXVoQ%3D%3D
Drill Core
- https://pubmed.ncbi.nlm.nih.gov/35776744/ - Deep learning based lithology classification of drill core images
- https://www.researchgate.net/publication/381445417_Machine_Learning_for_Lithology_Analysis_using_a_Multi-Modal_Approach_of_Integrating_XRF_and_XCT_data
- https://www.researchgate.net/publication/379760986_A_machine_vision_approach_for_detecting_changes_in_drill_core_textures_using_optical_images
- https://www.sciencedirect.com/science/article/pii/S2949891024002112 -> Sensitivity analysis of similarity learning models for well-intervals based on logging data
- https://www.sciencedirect.com/science/article/pii/S2949891024003828 -> CoreViT: a new vision transformer model for lithology identification in cores
Allgemein
- https://www.sciencedirect.com/science/article/pii/S0034425724002323 -> Deep learning-based geological map generation using geological routes
- https://www.researchgate.net/publication/354781583_Deep_learning_framework_for_geological_symbol_detection_on_geological_maps
- https://www.researchgate.net/publication/335104674_Does_shallow_geological_knowledge_help_neural-networks_to_predict_deep_units
- https://www.researchgate.net/publication/379939974_Graph_convolutional_network_for_lithological_classification_and_mapping_using_stream_sediment_geochemical_data_and_geophysical_data
- https://www.sciencedirect.com/science/article/abs/pii/S0098300424001493-> FlexLogNet: A flexible deep learning-based well-log completion method of adaptively using what you have to predict what you are missing
- https://ieeexplore.ieee.org/abstract/document/10493129 -> Geological Background Prototype Learning Enhanced Network for Remote Sensing-Based Engineering Geological Lithology Interpretation in Highly Vegetated Areas [Unseen]
- https://www.sciencedirect.com/science/article/pii/S2096249524000619 -> Generating extremely low-dimensional representation of subsurface earth models using vector quantization and deep Autoencoder
- https://www.researchgate.net/publication/370175012_GeoPDNN_A_Semisupervised_Deep_Learning_Neural_Network_Using_Pseudolabels_for_Three-dimensional_Urban_Geological_Modelling_and_Uncertainty_Analysis_from_Borehole_Data
- https://www.researchsquare.com/article/rs-4805227/v1 -> Synergizing AI with Geology: Exploring VisionTransformers for Rock Classification
- https://www.researchgate.net/publication/343511849_Identification_of_intrusive_lithologies_in_volcanic_terrains_in_British_Columbia_by_machine_learning_using_Random_Forests_the_value_of_using_a_soft_classifier
- https://www.sciencedirect.com/science/article/pii/S0169136824000921 -> Machine learning-based field geological mapping: A new exploration of geological survey data acquisition strategy https://www.researchgate.net/publication/324411647_Predicting_rock_type_and_detecting_hydrothermal_alteration_using_machine_learning_and_petrophysical_properties_of_the_Canadian_Malartic_ore_and_host_rocks_Pontiac_Subprovince_Quebec_Canada
- https://www.sciencedirect.com/science/article/abs/pii/S0895981124001743 -> Utilizing Random Forest algorithm for identifying mafic and ultramafic rocks in the Gameleira Suite, Archean-Paleoproterozoic basement of the Brasília Belt, Brazil
- https://arxiv.org/pdf/2407.18100 -> DINOv2 Rocks Geological Image Analysis: Classification,
Geochronologie
- https://www.researchgate.net/publication/379077847_Tracing_Andean_Origins_A_Machine_Learning_Framework_for_Lead_Isotopes
Geomorphologie
- https://agu.confex.com/agu/fm18/mediafile/Handout/Paper427843/Landforms%20Poster.pdf -> Using machine learning to classify landforms for minerals exploration
- https://www.tandfonline.com/doi/abs/10.1080/13658816.2024.2414409 -> GeomorPM: a geomorphic pretrained model integrating convolution and Transformer architectures based on DEM data
Lithology
- https://link.springer.com/article/10.1007/s11053-024-10396-4 -> Interpretable SHAP Model Combining Meta-learning and Vision Transformer for Lithology Classification Using Limited and Unbalanced Drilling Data in Well Logging [UNSEN]
- https://www.nature.com/articles/s41598-024-66199-3 -> Machine learning and remote sensing-based lithological mapping of the Duwi Shear-Belt area, Central Eastern Desert, Egypt
- https://link.springer.com/article/10.1007/s11053-024-10375-9 - SsL-VGMM: A Semisupervised Machine Learning Model of Multisource Data Fusion for Lithology Prediction [UNSEEN]
- https://www.researchgate.net/publication/380719080_An_integrated_machine_learning_framework_with_uncertainty_quantification_for_three-dimensional_lithological_modeling_from_multi-source_geophysical_data_and_drilling_data
- https://www.bio-conferences.org/articles/bioconf/pdf/2024/34/bioconf_rena23_01005.pdf -> Lithological Mapping using Artificial Intelligence and Remote Sensing data: A Case Study of Bab Boudir region Morocco
Mineralogie
- https://pubs.geoscienceworld.org/msa/ammin/article-abstract/doi/10.2138/am-2023-9092/636861/The-application-of-transfer-learning-in-optical -> The application of “transfer learning” in optical microscopy: the petrographic classification of metallic minerals
- https://www.researchgate.net/publication/385074584_Deep_Learning-Based_Mineral_Classification_Using_Pre-Trained_VGG16_Model_with_Data_Augmentation_Challenges_and_Future_Directions
Stratigraphie
- https://www.researchgate.net/publication/335486001_A_Stratigraphic_Prediction_Method_Based_on_Machine_Learning
- https://www.researchgate.net/publication/346641320_Classifying_basin-scale_stratigraphic_geometries_from_subsurface_formation_tops_with_machine_learning
Struktur
- https://www.sciencedirect.com/science/article/pii/S0098300421000285 -> A machine learning model for structural trend fields
- https://onlinelibrary.wiley.com/doi/full/10.1111/1365-2478.13589 -> Inferring fault structures and overburden depth in 3D from geophysical data using machine learning algorithms – A case study on the Fenelon gold deposit, Quebec, Canada
- https://www.sciencedirect.com/science/article/pii/S019181412400138X -> Mapping paleostress trajectories by means of the clustering of reduced stress tensors determined from homogeneous and heterogeneous data sets
- https://www.researchgate.net/publication/332267249_Seismic_fault_detection_using_an_encoder-decoder_convolutional_neural_network_with_a_small_training_set
- https://www.researchgate.net/publication/377168034_Unsupervised_machine_learning_and_depth_clusters_of_Euler_deconvolution_of_magnetic_data_a_new_approach_to_imaging_geological_structures
- https://academic.oup.com/gji/advance-article/doi/10.1093/gji/ggae226/7701418 -> Use of Decision Tree Ensembles for Crustal Structure Imaging from Receiver Functions
Tektonik
- https://www.researchgate.net/publication/371594975_Assessing_plate_reconstruction_models_using_plate_driving_force_consistency_tests
- https://www.researchgate.net/publication/333182666_Decoding_Earth's_plate_tectonic_history_using_sparse_geochemical_data
- https://www.researchgate.net/publication/376519740_Machine_learning_and_tectonic_setting_determination_Bridging_the_gap_between_Earth_scientists_and_data_scientists
- https://pubs.geoscienceworld.org/gsa/geology/article-abstract/doi/10.1130/G52466.1/648458/Prediction-of-CO2-content-in-mid-ocean-ridge -> Prediction of CO2 content in mid-ocean ridge basalts via a machine learning approach
Geophysik
Stiftung
- https://www.researchgate.net/publication/373714604_Seismic_Foundation_Model_SFM_a_new_generation_deep_learning_model_in_geophysics
Allgemein
- https://essopenarchive.org/users/841077/articles/1231187-bayesian-inference-in-geophysics-with-ai-enhanced-markov-chain-monte-carlo -> Bayesian Inference in Geophysics with AI-enhanced Markov chain Monte Carlo
- https://www.researchgate.net/publication/353789276_Geology_differentiation_by_applying_unsupervised_machine_learning_to_multiple_independent_geophysical_inversions
- https://www.sciencedirect.com/science/article/pii/S001379522100137X - Joint interpretation of geophysical data: Applying machine learning to the modeling of an evaporitic sequence in Villar de Cañas (Spain)
- https://www.sciencedirect.com/science/article/pii/S2666544121000253 - Microleveling aerogeophysical data using deep convolutional network and MoG-RPCA
- https://www.researchgate.net/publication/368550674_Objective_classification_of_high-resolution_geophysical_data_Empowering_the_next_generation_of_mineral_exploration_in_Sierra_Leone
- https://datarock.com.au/blog/transfer-learning-with-seismic-attributes -> Transfer Learning with Seismic Attributes
Potential Fields
- https://api.research-repository.uwa.edu.au/ws/portalfiles/portal/390212334/THESIS_-_DOCTOR_OF_PHILOSOPHY_-_SMITH_Luke_Thomas_-_2023_.pdf -> Potential Field Geophysics Enhancement Using Conteporary Deep Learning
EM
- https://d197for5662m48.cloudfront.net/documents/publicationstatus/206704/preprint_pdf/59681a0a2c571bc2a9006f37517bc6ef.pdf -> A Fast Three-dimensional Imaging Scheme of Airborne Time Domain Electromagnetic Data using Deep Learning
- https://www.researchgate.net/publication/351507441_A_Neural_Network-Based_Hybrid_Framework_for_Least-Squares_Inversion_of_Transient_Electromagnetic_Data
- https://www.researchgate.net/profile/Yunhe-Liu/publication/382196526_An_Efficient_Bayesian_Inference_for_Geo-electromagnetic_Data_Inversion_based_on_Surrogate_Modeling_with_Adaptive_Sampling_DNN
- https://www.researchgate.net/publication/325980016_Agglomerative_hierarchical_clustering_of_airborne_electromagnetic_data_for_multi-scale_geological_studies
- https://www.earthdoc.org/content/papers/10.3997/2214-4609.202410980 -> Deep Learning Assisted 2-D Current Density Modelling of Very Low Frequency Electromagnetic Data
- https://npg.copernicus.org/articles/26/13/2019/ -> Denoising stacked autoencoders for transient electromagnetic signal denoising
- https://www.researchgate.net/publication/373836226_An_information_theoretic_Bayesian_uncertainty_analysis_of_AEM_systems_over_Menindee_Lake_Australia -> An information theoretic Bayesian uncertainty analysis of AEM systems over Menindee Lake, Australia
- https://www.researchgate.net/publication/348850484_Effect_of_Data_Normalization_on_Neural_Networks_for_the_Forward_Modelling_of_Transient_Electromagnetic_Data
- https://www.researchgate.net/publication/342153377_Fast_imaging_of_time-domain_airborne_EM_data_using_deep_learning_technology
- https://library.seg.org/doi/10.4133/JEEG4.2.93 -> Neural Network Interpretation of High Frequency Electromagnetic Ellipticity Data Part I: Understanding the Half-Space and Layered Earth Response
- https://arxiv.org/abs/2207.12607 -> Physics Embedded Machine Learning for Electromagnetic Data Imaging
- https://academic.oup.com/gji/advance-article/doi/10.1093/gji/ggae244/7713480 -> Physics-guided deep learning-based inversion for airborne electromagnetic data
- https://library.seg.org/doi/abs/10.1190/geo2024-0282.1 -> Comparative Analysis of Deep Learning and Traditional Airborne Electromagnetic Data Processing: A Case Study [UNSEEN]
- https://www.researchgate.net/publication/359441000_Surface_parameters_and_bedrock_properties_covary_across_a_mountainous_watershed_Insights_from_machine_learning_and_geophysics
- https://www.researchgate.net/publication/337166479_Using_machine_learning_to_interpret_3D_airborne_electromagnetic_inversions
- https://www.researchgate.net/publication/344397798_TEMDnet_A_Novel_Deep_Denoising_Network_for_Transient_Electromagnetic_Signal_With_Signal-to-Image_Transformation
- https://www.researchgate.net/publication/366391168_Two-dimensional_fast_imaging_of_airborne_EM_data_based_on_U-net
ERT
- https://www.sciencedirect.com/science/article/pii/S0013795224001893 -> Geo-constrained clustering of resistivity data revealing the heterogeneous lithological architectures and the distinctive geoelectrical signature of shallow deposits
Schwerkraft
- https://ieeexplore.ieee.org/abstract/document/10597585 -> 3D Basement Relief and Density Inversion Based on EfficientNetV2 Deep Learning Network [UNSEEN]
- https://link.springer.com/article/10.1007/s11770-024-1096-5 -> 3D gravity inversion using cycle-consistent generative adversarial network [UNSEEN]
- https://www.researchgate.net/publication/365142017_3D_gravity_inversion_based_on_deep_learning
- https://www.researchgate.net/publication/378930477_A_Deep_Learning_Gravity_Inversion_Method_Based_on_a_Self-Constrained_Network_and_Its_Application
- https://www.researchgate.net/publication/362276214_DecNet_Decomposition_network_for_3D_gravity_inversion -> Olympic Dam example here
- https://www.researchgate.net/publication/368448190_Deep_Learning_to_estimate_the_basement_depth_by_gravity_data_using_Feedforward_neural_network
- https://www.researchgate.net/publication/326231731_Depth_and_Lineament_Maps_Derived_from_North_Cameroon_Gravity_Data_Computed_by_Artificial_Neural_Network_International_Journal_of_Geophysics_vol_2018_Article_ID_1298087_13_pages_2018
- https://www.researchgate.net/publication/366922016_Fast_imaging_for_the_3D_density_structures_by_machine_learning_approach
- https://www.researchgate.net/publication/370230217_Inversion_of_the_Gravity_Gradiometry_Data_by_ResUet_Network_An_Application_in_Nordkapp_Basin_Barents_Sea
- https://www.frontiersin.org/journals/earth-science/articles/10.3389/feart.2022.897055/full -> High-precision downward continuation of the potential field based on the D-Unet network
- https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10672527 -> RTM Gravity Forward Modeling Using Improved Fully Connected Deep Neural Networks
Hyperspectral
- https://www.researchgate.net/publication/380391736_A_review_on_hyperspectral_imagery_application_for_lithological_mapping_and_mineral_prospecting_Machine_learning_techniques_and_future_prospects
- https://www.researchgate.net/publication/372876863_Ore-Grade_Estimation_from_Hyperspectral_Data_Using_Convolutional_Neural_Networks_A_Case_Study_at_the_Olympic_Dam_Iron_Oxide_Copper-Gold_Deposit_Australia [UNSEEN]
Joint Inversion
- https://www.researchgate.net/publication/383454185_Deep_joint_inversion_of_electromagnetic_seismic_and_gravity_data
- https://ieeexplore.ieee.org/abstract/document/10677418 -> Joint Inversion of Seismic and Resistivity Data Powered by Deep-learning [UNSEEN]
Magnetics
- https://www.researchgate.net/publication/348697645_3D_geological_structure_inversion_from_Noddy-generated_magnetic_data_using_deep_learning_methods
- https://www.researchgate.net/publication/360288249_3D_Inversion_of_Magnetic_Gradient_Tensor_Data_Based_on_Convolutional_Neural_Networks
- https://www.researchgate.net/publication/295902270_Artificial_neural_network_inversion_of_magnetic_anomalies_caused_by_2D_fault_structures
- https://www.researchgate.net/publication/354002966_Convolutional_neural_networks_for_the_characterization_of_magnetic_anomalies
- https://www.researchgate.net/publication/354772176_Convolution_Neural_Networks_Applied_to_the_Interpretation_of_Lineaments_in_Aeromagnetic_Data
- https://www.researchgate.net/publication/363550362_High-precision_downward_continuation_of_the_potential_field_based_on_the_D-Unet_network
- https://www.sciencedirect.com/science/article/pii/S0169136822004279?via%3Dihub -> Magnetic grid resolution enhancement using machine learning: A case study from the Eastern Goldfields Superterrane
- https://www.researchgate.net/publication/347173621_Predicting_Magnetization_Directions_Using_Convolutional_Neural_Networks -> Paywalled
- https://www.researchgate.net/publication/361114986_Reseaux_de_Neurones_Convolutifs_pour_la_Caracterisation_d'Anomalies_Magnetiques -> French original of the above
Magnetotellurics
- https://advancesincontinuousanddiscretemodels.springeropen.com/articles/10.1186/s13662-024-03842-3 -> 2D magnetotelluric imaging method based on visionary self-attention mechanism and data science
- https://ieeexplore.ieee.org/abstract/document/10530937 -> A Magnetotelluric Data Denoising Method Based on Lightweight Ensemble Learning [UNSEEN]
- https://academic.oup.com/gji/advance-article/doi/10.1093/gji/ggae166/7674890 -> Deep basin conductor characterization using machine learning-assisted magnetotelluric Bayesian inversion in the SW Barents Sea
- http://en.dzkx.org/article/doi/10.6038/cjg2024R0580 -> Fast inversion method of apparent resistivity based on deep learning
- https://www.researchgate.net/publication/367504269_Flexible_and_accurate_prior_model_construction_based_on_deep_learning_for_2D_magnetotelluric_data_inversion
- https://www.sciencedirect.com/science/article/pii/S2214579624000510 -> Intelligent Geological Interpretation of AMT Data Based on Machine Learning
- https://ieeexplore.ieee.org/abstract/document/10551853 -> Magnetotelluric Data Inversion Based on Deep Learning with the Self-attention Mechanism
- https://www.researchgate.net/publication/361741409_Physics-Driven_Deep_Learning_Inversion_with_Application_to_Magnetotelluric
- https://www.researchgate.net/publication/355568465_Stochastic_inversion_of_magnetotelluric_data_using_deep_reinforcement_learning
- https://www.researchgate.net/publication/354360079_Two-dimensional_deep_learning_inversion_of_magnetotelluric_sounding_data
- https://ieeexplore.ieee.org/abstract/document/10530923 -> Three Dimensional Magnetotelluric Forward Modeling Through Deep Learning
Passive Seismic
- https://nature.com/articles/s41467-020-17841-x -> Clustering earthquake signals and background noises in continuous seismic data with unsupervised deep learning
- https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2022GL099053 -> Eikonal Tomography With Physics-Informed Neural Networks: Rayleigh Wave Phase Velocity in the Northeastern Margin of the Tibetan Plateau
- https://arxiv.org/abs/2403.15095 -> End-to-End Mineral Exploration with Artificial Intelligence and Ambient Noise Tomography
- https://www.nature.com/articles/s41598-019-50381-z -> High-resolution seismic tomography of Long Beach, CA using machine learning
Seismic
- https://www.sciencedirect.com/science/article/pii/S0040195124002166 -> Reprocessing and interpretation of legacy seismic data using machine learning from the Granada Basin, Spain
- https://ojs.uni-miskolc.hu/index.php/geosciences/article/view/3313 -> EDGE DETECTION OF TOMOGRAPHIC IMAGES USING TRADITIONAL AND DEEP LEARNING TOOLS
Surface Resistivity
- https://www.researchgate.net/publication/367606119_Deriving_Surface_Resistivity_from_Polarimetric_SAR_Data_Using_Dual-Input_UNet
Unsicherheit
- https://library.seg.org/doi/abs/10.1190/GEM2024-084.1 -> Quantifying uncertainty in 3D geophysical inverse problems: Advancing from deterministic to Bayesian and deep generative models [UNSEEN]
Geothermal
- https://www.osti.gov/biblio/2335471 - Applications of Machine Learning Techniques to Geothermal Play Fairway Analysis in the Great Basin Region, Nevada [adjacent but interesting]
- https://gdr.openei.org/submissions/1402 - Associated code
- https://catalog.data.gov/dataset/python-codebase-and-jupyter-notebooks-applications-of-machine-learning-techniques-to-geoth
- https://www.researchgate.net/publication/341418586_Preliminary_Report_on_Applications_of_Machine_Learning_Techniques_to_the_Nevada_Geothermal_Play_Fairway_Analysis
Karten
- https://www.researchgate.net/publication/347786302_Semantic_Segmentation_Deep_Learning_for_Extracting_Surface_Mine_Extents_from_Historic_Topographic_Maps
Mineral
- https://www.researchgate.net/publication/357942198_Mineral_classification_of_lithium-bearing_pegmatites_based_on_laser-induced_breakdown_spectroscopy_Application_of_semi-supervised_learning_to_detect_known_minerals_and_unknown_material
- https://iopscience.iop.org/article/10.1088/1755-1315/1032/1/012046 -> Classifying Minerals using Deep Learning Algorithms
- https://www.researchgate.net/publication/370835450_Predicting_new_mineral_occurrences_and_planetary_analog_environments_via_mineral_association_analysis
- https://www.researchgate.net/publication/361230503_What_is_Mineral_Informatics
NLP
- https://www.researchgate.net/publication/358616133_Chinese_Named_Entity_Recognition_in_the_Geoscience_Domain_Based_on_BERT
- https://www.researchgate.net/publication/339394395_Dictionary-Based_Automated_Information_Extraction_From_Geological_Documents_Using_a_Deep_Learning_Algorithm
- https://www.aclweb.org/anthology/2020.lrec-1.568/ -> Embeddings for Named Entity Recognition in Geoscience Portuguese Literature
- https://www.researchgate.net/publication/359186219_Few-shot_learning_for_name_entity_recognition_in_geological_text_based_on_GeoBERT
- https://www.researchgate.net/publication/333464862_GeoDocA_-_Fast_Analysis_of_Geological_Content_in_Mineral_Exploration_Reports_A_Text_Mining_Approach
- https://www.researchgate.net/publication/366710921_Geological_profile-text_information_association_model_of_mineral_exploration_reports_for_fast_analysis_of_geological_content
- https://www.researchgate.net/publication/330835955_Geoscience_Keyphrase_Extraction_Algorithm_Using_Enhanced_Word_Embedding [UNSEEN]
- https://www.researchgate.net/publication/332997161_GNER_A_Generative_Model_for_Geological_Named_Entity_Recognition_Without_Labeled_Data_Using_Deep_Learning
- https://www.researchgate.net/publication/321850315_Information_extraction_and_knowledge_graph_construction_from_geoscience_literature
- https://www.researchgate.net/publication/365929623_Named_Entity_Annotation_Schema_for_Geological_Literature_Mining_in_the_Domain_of_Porphyry_Copper_Deposits
- https://www.researchgate.net/publication/329621358_Ontology-Based_Enhanced_Word_Embedding_for_Automated_Information_Extraction_from_Geoscience_Reports
- https://www.researchgate.net/publication/379808469_Ontology-driven_relational_data_mapping_for_constructing_a_knowledge_graph_of_porphyry_copper_deposits -> Ontology-driven relational data mapping for constructing a knowledge graph of porphyry copper deposits
- https://www.researchgate.net/publication/327709479_Prospecting_Information_Extraction_by_Text_Mining_Based_on_Convolutional_Neural_Networks-A_Case_Study_of_the_Lala_Copper_Deposit_China
- https://ieeexplore.ieee.org/document/8711400 -> Research and Application on Geoscience Literature Knowledge Discovery Technology
- https://www.researchgate.net/publication/332328315_Text_Mining_to_Facilitate_Domain_Knowledge_Discovery
- https://www.researchgate.net/publication/351238658_Understanding_Ore-Forming_Conditions_using_Machine_Reading_of_Text
- https://www.researchgate.net/publication/359089763_Visual_analytics_and_information_extraction_of_geological_content_for_text-based_mineral_exploration_reports
- https://www.researchgate.net/publication/354754114_What_is_this_article_about_Generative_summarization_with_the_BERT_model_in_the_geosciences_domain
- https://www.slideshare.net/phcleverley/where-text-analytics-meets-geoscience -> Where text analytics meets geoscience
Petrography
- https://www.researchgate.net/publication/335226326_Digital_petrography_Mineralogy_and_porosity_identification_using_machine_learning_algorithms_in_petrographic_thin_section_images
Last edited: 29/09/2020 The below are a collection of works from when I was doing a review
Public Mineral Prospectivity Mapping
Überblick
- https://www.researchgate.net/publication/331852267_Applying_Spatial_Prospectivity_Mapping_to_Exploration_Targeting_Fundamental_Practical_issues_and_Suggested_Solutions_for_the_Future
- https://www.researchgate.net/publication/284890591_Geochemical_Anomaly_and_Mineral_Prospectivity_Mapping_in_GIS
- https://www.researchgate.net/publication/341472154_Geodata_Science-Based_Mineral_Prospectivity_Mapping_A_Review
- https://www.researchgate.net/publication/275338029_Introduction_to_the_Special_Issue_GIS-based_mineral_potential_modelling_and_geological_data_analyses_for_mineral_exploration
- https://www.researchgate.net/publication/339074334_Introduction_to_the_special_issue_on_spatial_modelling_and_analysis_of_ore-forming_processes_in_mineral_exploration_targeting
- https://www.researchgate.net/publication/317319129_Natural_Resources_Research_Publications_on_Geochemical_Anomaly_and_Mineral_Potential_Mapping_and_Introduction_to_the_Special_Issue_of_Papers_in_These_Fields
- https://www.researchgate.net/publication/46696293_Selection_of_coherent_deposit-type_locations_and_their_application_in_data-driven_mineral_prospectivity_mapping
Geochemie
https://www.researchgate.net/publication/375926319_A_paradigm_shift_in_Precambrian_research_driven_by_big_data
https://www.researchgate.net/publication/359447201_A_review_of_machine_learning_in_geochemistry_and_cosmochemistry_Method_improvements_and_applications
- https://jaywen.com/files/He_2022_Applied_Geochemistry.pdf
https://www.researchgate.net/publication/220164381_Application_of_geochemical_zonality_coefficients_in_mineral_prospectivity_mapping
https://www.researchgate.net/publication/238505045_Analysis_and_mapping_of_geochemical_anomalies_using_logratio-transformed_stream_sediment_data_with_censored_values
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2022EA002626 -> Comparative Study on Three Autoencoder-Based Deep Learning Algorithms for Geochemical Anomaly Identification
https://www.researchgate.net/publication/373758047_Decision-making_within_geochemical_exploration_data_based_on_spatial_uncertainty_-A_new_insight_and_a_futuristic_review
https://www.researchgate.net/publication/331505001_Deep_learning_and_its_application_in_geochemical_mapping
https://www.researchgate.net/publication/380262759_Factor_analysis_in_residual_soils_of_the_Iberian_Pyrite_Belt_Spain_Comparison_between_raw_data_log_transformation_data_and_compositional_data [UNSEEN]
https://www.researchgate.net/publication/272091723_Geochemical_characteristics_of_mineral_deposits_Implications_for_ore_genesis
https://www.researchgate.net/publication/257189047_Geochemical_mineralization_probability_index_GMPI_A_new_approach_to_generate_enhanced_stream_sediment_geochemical_evidential_map_for_increasing_probability_of_success_in_mineral_potential_mapping
https://www.researchgate.net/publication/333497470_Integration_of_auto-encoder_network_with_density-based_spatial_clustering_for_geochemical_anomaly_detection_for_mineral_exploration
https://www.researchgate.net/publication/319303831_Introduction_to_the_thematic_issue_Analysis_of_exploration_geochemical_data_for_mapping_of_anomalies
https://www.researchgate.net/publication/356722687_Machine_learning-based_prediction_of_trace_element_concentrations_using_data_from_the_Karoo_large_igneous_province_and_its_application_in_prospectivity_mapping#fullTextFileContent
https://www.degruyter.com/document/doi/10.2138/am-2023-9115/html -> Machine learning applied to apatite compositions for determining mineralization potential [UNSEEN]
https://www.researchgate.net/publication/257026525_Primary_geochemical_characteristics_of_mineral_deposits_-_Implications_for_exploration
https://www.researchgate.net/publication/283554338_Recognition_of_geochemical_anomalies_using_a_deep_autoencoder_network
- https://zarmesh.com/wp-content/uploads/2017/04/Recognition-of-geochemical-anomalies-using-a-deep-autoencoder-network.pdf
https://www.researchgate.net/publication/349606557_Robust_Feature_Extraction_for_Geochemical_Anomaly_Recognition_Using_a_Stacked_Convolutional_Denoising_Autoencoder [UNSEEN]
https://www.researchgate.net/publication/375911531_Spatial_Interpolation_Using_Machine_Learning_From_Patterns_and_Regularities_to_Block_Models#fullTextFileContent
https://www.researchgate.net/publication/259716832_Supervised_and_unsupervised_classification_of_near-mine_soil_Geochemistry_and_Geophysics_data
https://www.researchgate.net/publication/277813662_Supervised_Geochemical_Anomaly_Detection_by_Pattern_Recognition
https://www.researchgate.net/publication/249544991_Usefulness_of_stream_order_to_detect_stream_sediment_geochemical_anomalies
https://www.researchgate.net/publication/321275541_Weighting_stream_sediment_geochemical_samples_as_exploration_indicator_of_deposit_-_type
Unscharf
- https://www.researchgate.net/publication/272170968_A_Comparative_Analysis_of_Weights_of_Evidence_Evidential_Belief_Functions_and_Fuzzy_Logic_for_Mineral_Potential_Mapping_Using_Incomplete_Data_at_the_Scale_of_Investigation
- https://www.researchgate.net/publication/267816279_Fuzzification_of_continuous-value_spatial_evidence_for_mineral_prospectivity_mapping
- https://www.researchgate.net/publication/301635716_Union_score_and_fuzzy_logic_mineral_prospectivity_mapping_using_discretized_and_continuous_spatial_evidence_values
Unsicherheit
- https://deliverypdf.ssrn.com/delivery.php?ID=555064031119110002088087068121000096050036019060022069010050000053011056029076002067121000064004002088113115000107115017083105004026015092089005123065040099024112018026013043065104094012124120126039100033055018066074125089104115090100009064122122019003015085069021024027072126106082092110&EXT=pdf&INDEX=TRUE -> Estimating uncertainties in 3-D models of complex fold-and-thrust 2 belts: a case study of the Eastern Alps triangle zone
- https://www.researchgate.net/publication/333339659_Incorporating_conceptual_and_interpretation_uncertainty_to_mineral_prospectivity_modelling
- https://www.researchgate.net/publication/235443307_Managing_uncertainty_in_exploration_targeting
- https://www.researchgate.net/publication/255909185_The_upside_of_uncertainty_Identification_of_lithology_contact_zones_from_airborne_geophysics_and_satellite_data_using_random_forests_and_support_vector_machines
Geospatial Maps
Australien
- https://www.researchgate.net/publication/334440382_Mapping_iron_oxide_Cu-Au_IOCG_mineral_potential_in_Australia_using_a_knowledge-driven_mineral_systems-based_approach
South Australia
- https://www.researchgate.net/publication/335313790_Prospectivity_modelling_of_the_Olympic_Cu-Au_Province - https://services.sarig.sa.gov.au/raster/ProspectivityModelling/wms?service=wms&version=1.1.1&REQUEST=GetCapabilities
- An assessment of the uranium and geothermal prospectivity of east-central South Australia - https://d28rz98at9flks.cloudfront.net/72666/Rec2011_034.pdf
NT
- https://www.researchgate.net/publication/285235798_An_assessment_of_the_uranium_and_geothermal_prospectivity_of_the_southern_Northern_Territory
WA
- https://www.researchgate.net/publication/273073675_Building_a_machine_learning_classifier_for_iron_ore_prospectivity_in_the_Yilgarn_Craton
- http://dmpbookshop.eruditetechnologies.com.au/product/district-scale-targeting-for-gold-in-the-yilgarn-craton-part-2-of-the-yilgarn-gold-exploration-targeting-atlas.do$55 purchase
- http://dmpbookshop.eruditetechnologies.com.au/product/mineral-prospectivity-of-the-king-leopold-orogen-and-lennard-shelf-analysis-of-potential-field-data-in-the-west-kimberley-region-geographical-product-n14bnzp.do
- http://dmpbookshop.eruditetechnologies.com.au/product/mineral-systems-analysis-of-the-west-musgrave-province-regional-structure-and-prospectivity-modelling-geographical-product-n12dzp.do
- http://dmpbookshop.eruditetechnologies.com.au/product/mineral-systems-analysis-of-the-west-musgrave-province-regional-structure-and-prospectivity-modelling.do $22 purchase
- https://researchdata.edu.au/predictive-mineral-discovery-gold-mineral/1209568?source=suggested_datasets - Predictive mineral discovery in the eastern Yilgarn Craton: an example of district-scale targeting of an orogenic gold mineral system - https://d28rz98at9flks.cloudfront.net/82617/Y4_Gold_Targeting.zip
- http://dmpbookshop.eruditetechnologies.com.au/product/prospectivity-analysis-of-the-halls-creek-orogen-western-australia-using-a-mineral-systems-approach-geographical-product-n15af3zp.do
- https://researchdata.edu.au/prospectivity-analysis-using-063-m436/1424743 - Prospectivity analysis using a mineral systems approach - Capricorn case study project CSIRO Prospectivity analysis using a mineral systems approach - Capricorn case study project (13.5 GB Herunterladen)
- http://dmpbookshop.eruditetechnologies.com.au/product/regional-scale-targeting-for-gold-in-the-yilgarn-craton-part-1-of-the-yilgarn-gold-exploration-targeting-atlas.do $55 purchase
- https://www.researchgate.net/publication/263928515_Towards_Australian_metallogenic_maps_through_space_and_time
- https://www.sciencedirect.com/science/article/abs/pii/S0301926810002111 - Yilgarn
Brasilien
- https://www.researchgate.net/publication/340633563_CATALOG_OF_PROSPECTIVITY_MAPS_OF_SELECTED_AREAS_FROM_BRAZIL
- https://www.researchgate.net/publication/341936771_Modeling_of_Cu-Au_Prospectivity_in_the_Carajas_mineral_province_Brazil_through_Machine_Learning_Dealing_with_Imbalanced_Training_Data
- https://www.researchgate.net/publication/287270273_Nickel_prospective_modelling_using_fuzzy_logic_on_nova_Brasilandia_metasedimentary_belt_Rondonia_Brazil
- https://www.scielo.br/scielo.php?script=sci_arttext&pid=S2317-48892016000200261 - Sao Francisco Craton Nickel
Australien
- https://www.researchgate.net/publication/248211737_A_continent-wide_study_of_Australia's_uranium_potential
- https://www.researchgate.net/publication/334440382_Mapping_iron_oxide_Cu-Au_IOCG_mineral_potential_in_Australia_using_a_knowledge-driven_mineral_systems-based_approach
- https://researchdata.edu.au/predictive-model-opal-mining-approach/673159/?refer_q=rows=15/sort=score%20desc/class=collection/p=2/q=mineral%20prospectivity%20map/ - Opal
SA
- https://data.gov.au/dataset/ds-ga-a8619169-1c2a-6697-e044-00144fdd4fa6/details?q= -> An assessment of the uranium and geothermal prospectivity of east central South Australia
- https://d28rz98at9flks.cloudfront.net/72666/Rec2011_034.pdf -> An assessment of the uranium and geothermal prospectivity of east-central South Australia
- https://www.pir.sa.gov.au/__data/assets/pdf_file/0011/239636/204581-001_wise_high.pdf - Eastern Gawler - WPA
- http://www.energymining.sa.gov.au/minerals/knowledge_centre/mesa_journal/previous_feature_articles/new_prospectivity_map
- https://catalog.sarig.sa.gov.au/geonetwork/srv/eng/catalog.search#/metadata/e59cd4ba-1a0a-4911-9e6a-58d80576678d - Olympic Domain IOCG Prospectivity model
- https://www.researchgate.net/publication/335313790_Prospectivity_modelling_of_the_Olympic_Cu-Au_Province - https://services.sarig.sa.gov.au/raster/ProspectivityModelling/wms?service=wms&version=1.1.1&REQUEST=GetCapabilities
WA
- https://www.sciencedirect.com/science/article/abs/pii/S0301926810002111 - Yilgarn Karol Czarnota
- https://www.researchgate.net/publication/229333177_Prospectivity_analysis_of_the_Plutonic_Marymia_Greenstone_Belt_Western_Australia
- https://www.researchgate.net/publication/280039091_Mineral_systems_approach_applied_to_GIS-based_2D-prospectivity_modelling_of_geological_regions_Insights_from_Western_Australia
- https://www.researchgate.net/publication/351238658_Understanding_Ore-Forming_Conditions_using_Machine_Reading_of_Text
NT
- https://www.researchgate.net/publication/285235798_An_assessment_of_the_uranium_and_geothermal_prospectivity_of_the_southern_Northern_Territory
- https://www.researchgate.net/publication/342352173_Modelling_gold_potential_in_the_Granites-Tanami_Orogen_NT_Australia_A_comparative_study_using_continuous_and_data-driven_techniques
NSW
- https://www.resourcesandgeoscience.nsw.gov.au/miners-and-explorers/geoscience-information/projects/mineral-potential-mapping#_southern-_new-_england-_orogen-mineral-potential
- https://www.smedg.org.au/GSNSW_2019_Blevin.pdf - Eastern Lachlan Orogen
- https://www.researchgate.net/publication/265915602_Comparing_prospectivity_modelling_results_and_past_exploration_data_A_case_study_of_porphyry_Cu-Au_mineral_systems_in_the_Macquarie_Arc_Lachlan_Fold_Belt_New_South_Wales
Brasilien
- https://www.researchgate.net/publication/340633563_CATALOG_OF_PROSPECTIVITY_MAPS_OF_SELECTED_AREAS_FROM_BRAZIL
- https://www.researchgate.net/publication/340633739_MINERAL_POTENTIAL_AND_OPORTUNITIES_FOR_THE_EXPLORATION_OF_NEW_GEOLOGICAL_GROUNDS_IN_BRAZIL
- https://www.semanticscholar.org/paper/Mineral-Potential-Mapping-for-Orogenic-Gold-in-the-Silva-Silva/a23a9ce4da48863da876758afa9e1d2723088853
- https://www.scielo.br/scielo.php?script=sci_arttext&pid=S2317-48892016000200261 - Supergene nickel deposits in outhwestern Sao Francisco Carton, Brazil
Carajas
- https://www.researchgate.net/publication/258466504_Self-Organizing_Maps_A_Data_Mining_Tool_for_the_Analysis_of_Airborne_Geophysical_Data_Collected_over_the_Brazilian_Amazon
- https://www.researchgate.net/publication/258647519_Semiautomated_geologic_mapping_using_self-organizing_maps_and_airborne_geophysics_in_the_Brazilian_Amazon
- https://www.researchgate.net/publication/235443304_GIS-Based_prospectivity_mapping_for_orogenic_gold_A_case_study_from_the_Andorinhas_region_Brasil
- https://www.researchgate.net/publication/341936771_Modeling_of_Cu-Au_Prospectivity_in_the_Carajas_mineral_province_Brazil_through_Machine_Learning_Dealing_with_Imbalanced_Training_Data
- https://www.researchgate.net/publication/332031621_Predictive_lithological_mapping_through_machine_learning_methods_a_case_study_in_the_Cinzento_Lineament_Carajas_Province_Brazil
- https://www.researchgate.net/publication/340633659_Copper-gold_favorability_in_the_Cinzento_Shear_Zone_Carajas_Mineral_Province
- https://www.researchgate.net/publication/329477409_Favorability_potential_for_IOCG_type_deposits_in_the_Riacho_do_Pontal_Belt_New_insights_for_identifying_prospects_of_IOCG-type_deposits_in_NE_Brazil
- https://www.researchgate.net/publication/339453836_Uranium_anomalies_detection_through_Random_Forest_regression
- https://d1wqtxts1xzle7.cloudfront.net/48145419/Artificial_neural_networks_applied_to_mi20160818-5365-odv4na.pdf?1471522188=&response-content-disposition=inline%3B+filename%3DArtificial_neural_networks_applied_to_mi.pdf&Expires=1593477539&Signature=DNmSxKogrD54dE4LX~8DT4K7vV0ZGcf8Q2RRfXEPsCc8PGiBrbeBpy4NVQdCiENLz-YfSzVGk6LI8k5MEGxR~qwnUn9ISLHDuIau6VqBFSEA29jMixCbvQM6hbkUJKQlli-AuSPUV23TsSk76kB6amDYtwNHmBnUPzTQGZLj2XkzJza9PA-7W2-VrPQKHNPxJp3z8J0mPq4rhmHZLaFMMSL6QMpK5qpvSqi6Znx-kIhCprlyYfODisq0unOIwnEQstiMf2RnB6gPmGOodhNlLsSr01e7TvtvFDBOQvhhooeDeQrvkINN4DJjAIIrbrcQ8B2b-ATQS0a3QQe93h-VFA__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA - Leite, EPL; de Souza Filho, CR Artificial neural networks applied to mineral potential mapping for copper-gold mineralizations in the Carajás Mineral Province, Brazil. Geoph. Prosp. 2009, 57, 1049–1065.
- https://link-springer-com.access.library.unisa.edu.au/content/pdf/10.1007/s11053-015-9263-2.pdf - A Comparative Analysis of Weights of Evidence, Evidential Belief Functions, and Fuzzy Logic for Mineral Potential Mapping Using Incomplete Data at the Scale of Investigation
- https://library.seg.org/doi/abs/10.1190/sbgf2011-245 - Gold Prospectivity Mapping of Andorinhas Greenstone Belt, Para
Gurupi
- https://www.researchgate.net/publication/312220651_Predictive_Mapping_of_Prospectivity_in_the_Gurupi_Orogenic_Gold_Belt_North-Northeast_Brazil_An_Example_of_District-Scale_Mineral_System_Approach_to_Exploration_Targeting
Australien
- https://www.researchgate.net/publication/260107484_Unsupervised_clustering_of_continental-scale_geophysical_and_geochemical_data_using_Self-Organising_Maps
- https://www.researchgate.net/publication/332263305_A_speedy_update_on_machine_learning_applied_to_bedrock_mapping_using_geochemistry_or_geophysics_examples_from_the_Pacific_Rim_and_nearby
- https://www.researchgate.net/publication/317312520_Catchment-based_gold_prospectivity_analysis_combining_geochemical_geophysical_and_geological_data_across_northern_Australia
- https://www.researchgate.net/publication/326571155_Continental-scale_mineral_prospectivity_assessment_using_the_National_Geochemical_Survey_of_Australia_NGSA_dataset
- https://www.researchgate.net/publication/334440382_Mapping_iron_oxide_Cu-Au_IOCG_mineral_potential_in_Australia_using_a_knowledge-driven_mineral_systems-based_approach
- https://www.researchgate.net/publication/282189370_Uranium_Prospectivity_Mapping_Across_the_Australian_Continent_via_Unsupervised_Cluster_Analysis_of_Integrated_Remote_Sensing_Data
South Australia
- https://www.researchgate.net/publication/335313790_Prospectivity_modelling_of_the_Olympic_Cu-Au_Province - https://services.sarig.sa.gov.au/raster/ProspectivityModelling/wms?service=wms&version=1.1.1&REQUEST=GetCapabilities
Queensland
- https://www.researchgate.net/publication/317312520_Catchment-based_gold_prospectivity_analysis_combining_geochemical_geophysical_and_geological_data_across_northern_Australia
- https://www.researchgate.net/publication/252707107_GIS-based_epithermal_copper_prospectivity_mapping_of_the_Mt_Isa_Inlier_Australia_Implications_for_exploration_targeting
- https://www.researchgate.net/publication/222211452_Predictive_modelling_of_prospectivity_for_Pb-Zn_deposits_in_the_Lawn_Hill_Region_Queensland_Australia
New South Wales
- https://www.researchgate.net/publication/336349643_MINERAL_POTENTIAL_MAPPING_AS_A_STRATEGIC_PLANNING_TOOL_IN_THE_EASTERN_LACHLAN_OROGEN_NSW
- https://www.publish.csiro.au/ex/pdf/ASEG2013ab236 - Mineral prospectivity analysis of the Wagga–Omeo belt in NSW
- https://www.researchgate.net/publication/329761040_NSW_Zone_54_Mineral_Systems_Mineral_Potential_Report
- https://www.researchgate.net/publication/337569823_Practical_Implementation_of_Random_Forest-Based_Mineral_Potential_Mapping_for_Porphyry_Cu-Au_Mineralization_in_the_Eastern_Lachlan_Orogen_NSW_Australia
- https://www.researchgate.net/publication/333551776_Translating_expressions_of_intrusion-related_mineral_systems_into_mappable_spatial_proxies_for_mineral_potential_mapping_Case_studies_from_the_Southern_New_England_Orogen_Australia
Tasmanien
- https://www.researchgate.net/publication/262380025_Mapping_geology_and_volcanic-hosted_massive_sulfide_alteration_in_the_Hellyer-Mt_Charter_region_Tasmania_using_Random_Forests_TM_and_Self-Organising_Maps
Victoria
- https://www.researchgate.net/publication/323856713_Lithological_mapping_using_Random_Forests_applied_to_geophysical_and_remote_sensing_data_a_demonstration_study_from_the_Eastern_Goldfields_of_Australia
- https://publications.csiro.au/publications/#publication/PIcsiro:EP123339/SQmineral%20prospectivity/RP1/RS50/RORECENT/STsearch-by-keyword/LISEA/RI16/RT26 [nickel]
- https://www.researchgate.net/publication/257026553_Regional_prospectivity_analysis_for_hydrothermal-remobilised_nickel_mineral_systems_in_western_Victoria_Australia
Westaustralien
- https://www.researchgate.net/publication/274714146_Reducing_subjectivity_in_multi-commodity_mineral_prospectivity_analyses_Modelling_the_west_Kimberley_Australia
- https://www.researchgate.net/publication/319013132_Identifying_mineral_prospectivity_using_3D_magnetotelluric_potential_field_and_geological_data_in_the_east_Kimberley_Australia
- https://www.researchgate.net/publication/280930127_Regional-scale_targeting_for_gold_in_the_Yilgarn_Craton_Part_1_of_the_Yilgarn_Gold_Exploration_Targeting_Atlas
- https://www.researchgate.net/publication/279533541_District-scale_targeting_for_gold_in_the_Yilgarn_Craton_Part_2_of_the_Yilgarn_Gold_Exploration_Targeting_Atlas
- https://www.researchgate.net/publication/257026568_Exploration_targeting_for_orogenic_gold_deposits_in_the_Granites-Tanami_Orogen_Mineral_system_analysis_targeting_model_and_prospectivity_analysis
- https://www.researchgate.net/publication/280039091_Mineral_systems_approach_applied_to_GIS-based_2D-prospectivity_modelling_of_geological_regions_Insights_from_Western_Australia (the West Arunta Orogen, West Musgrave Orogen and Gascoyne Province - http://dmpbookshop.eruditetechnologies.com.au/product/mineral-systems-analysis-of-the-west-musgrave-province-regional-structure-and-prospectivity-modelling.do
- https://reader.elsevier.com/reader/sd/pii/S0169136810000417? - token=9FD1C06A25E7ECC0C384C0ECF976E4BC9C36047C53CEED08066811979A640E89DD94C49510D1B500C6FF5E69982E018E Prospectivity analysis of the Plutonic Marymia Greenstone Belt, Western Australia
- https://research-repository.uwa.edu.au/en/publications/exploration-targeting-for-orogenic-gold-deposits-in-the-granites- - Tanami orogen
- https://www.researchgate.net/publication/332631130_Fuzzy_inference_systems_for_prospectivity_modeling_of_mineral_systems_and_a_case-study_for_prospectivity_mapping_of_surficial_Uranium_in_Yeelirrie_Area_Western_Australia_Ore_Geology_Reviews_71_839-852Tasmania
- https://publications.csiro.au/rpr/download?pid=csiro:EP102133&dsid=DS3 [nickel]
Endowment Modelling
- https://www.researchgate.net/publication/248211962_A_new_method_for_spatial_centrographic_analysis_of_mineral_deposit_clusters
- https://www.researchgate.net/publication/275620329_A_Time-Series_Audit_of_Zipf's_Law_as_a_Measure_of_Terrane_Endowment_and_Maturity_in_Mineral_Exploration
- https://www.researchgate.net/publication/341087909_Assessing_the_variability_of_expert_estimates_in_the_USGS_Three-part_Mineral_Resource_Assessment_Methodology_A_call_for_increased_skill_diversity_and_scenario-based_training
- https://github.com/iagoslc/ZipfsLaw_Quadrilatero_Ferrifero
- https://www.researchgate.net/publication/222834436_Controls_on_mineral_deposit_occurrence_inferred_from_analysis_of_their_spatial_pattern_and_spatial_association_with_geological_features
- https://www.researchgate.net/publication/229792860_From_Predictive_Mapping_of_Mineral_Prospectivity_to_Quantitative_Estimation_of_Number_of_Undiscovered_Prospects
- https://www.researchgate.net/publication/330994502_Global_Grade-and-Tonnage_Modeling_of_Uranium_deposits
- https://pubs.geoscienceworld.org/segweb/economicgeology/article-abstract/103/4/829/127993/Linking-Mineral-Deposit-Models-to-Quantitative?redirectedFrom=fulltext
- https://www.researchgate.net/publication/238365283_Metal_endowment_of_cratons_terranes_and_districts_Insights_from_a_quantitative_analysis_of_regions_with_giant_and_super-giant_deposits
- https://www.researchgate.net/publication/308778798_Spatial_analysis_of_mineral_deposit_distribution_A_review_of_methods_and_implications_for_structural_controls_on_iron_oxide-copper-gold_mineralization_in_Carajas_Brazil
- https://www.researchgate.net/publication/229347041_Predictive_mapping_of_prospectivity_and_quantitative_estimation_of_undiscovered_VMS_deposits_in_Skellefte_district_Sweden
- https://www.researchgate.net/publication/342405763_Predicting_grade-tonnage_characteristics_of_undiscovered_mineralisation_application_of_the_USGS_Three-part_Undiscovered_Mineral_Resource_Assessment_to_the_Sandstone_Greenstone_Belt_of_the_Yilgarn_Bloc
- https://www.sciencedirect.com/science/article/pii/S0169136810000685
- https://www.researchgate.net/publication/240301743_Spatial_statistical_analysis_of_the_distribution_of_komatiite-hosted_nickel_sulfide_deposits_in_the_Kalgoorlie_terrane_Western_Australia_Clustered_or_Not
World Models
- https://www.researchgate.net/publication/331283650_Archean_crust_and_metallogenic_zones_in_the_Amazonian_Craton_sensed_by_satellite_gravity_data
- https://eartharxiv.org/2kjvc/ -> Global distribution of sediment-hosted metals controlled by craton edge stability
- https://www.researchgate.net/post/Is_it_possible_to_derive_free_air_anomaly_or_bouguer_anomaly_from_gravity_disturbance_data
- https://www.researchgate.net/publication/325344128_The_role_of_basement_control_in_Iron_Oxide-Copper-Gold_mineral_systems_revealed_by_satellite_gravity_models
- https://www.researchgate.net/publication/331428028_Supplementary_Material_for_the_paper_Archean_crust_and_metallogenic_zones_in_the_Amazonian_Craton_sensed_by_satellite_gravity_data
- https://www.leouieda.com/pdf/use-the-disturbance.pdf
- https://www.leouieda.com/papers/use-the-disturbance.html
Financial Forecasting
- https://www.researchgate.net/publication/317137060_Forecasting_copper_prices_by_decision_tree_learning
- https://www.researchgate.net/publication/4874824_Mine_Size_and_the_Structure_of_Costs
Agent based Modelling
- https://mpra.ub.uni-muenchen.de/62159/ -> Mineral exploration as a game of chance [Agent Based Modelling]
Spectral Unmixing
- Overviews and examples, with some focus on neural network approaches.
Neuronale Netze
- https://www.researchgate.net/publication/224180646_A_neural_network_approach_for_pixel_unmixing_in_hyperspectral_data
- https://www.researchgate.net/publication/340690859_A_Supervised_Nonlinear_Spectral_Unmixing_Method_by_Means_of_Neural_Networks
- https://www.researchgate.net/publication/326205017_Classification_of_Hyperspectral_Data_Using_a_Multi-Channel_Convolutional_Neural_Network
- https://www.researchgate.net/publication/339062151_Classification_of_small-scale_hyperspectral_images_with_multi-source_deep_transfer_learning
- https://www.researchgate.net/publication/331824337_Comparative_Analysis_of_Unmixing_Algorithms_Using_Synthetic_Hyperspectral_Data
- https://www.researchgate.net/publication/335501086_Convolutional_Autoencoder_For_Spatial-Spectral_Hyperspectral_Unmixing
- https://www.researchgate.net/publication/341501560_Convolutional_Autoencoder_for_Spectral-Spatial_Hyperspectral_Unmixing
- https://www.researchgate.net/publication/333906204_Deep_convolutional_neural_networks_for_land-cover_classification_with_Sentinel-2_images
- https://www.researchgate.net/publication/356711693_Deep-learning-based_latent_space_encoding_for_spectral_unmixing_of_geological_materials
- https://www.researchgate.net/publication/331505001_Deep_learning_and_its_application_in_geochemical_mapping
- https://www.researchgate.net/publication/332696102_Deep_Learning_for_Classification_of_Hyperspectral_Data_A_Comparative_Review
- https://www.researchgate.net/publication/336889271_Deep_Learning_for_Hyperspectral_Image_Classification_An_Overview
- https://www.researchgate.net/publication/327995228_Deep_Spectral_Convolution_Network_for_Hyperspectral_Unmixing
- https://ieeexplore.ieee.org/abstract/document/10580951 -> Exploring Hybrid Contrastive Learning and Scene-to-Label Information for Multilabel Remote Sensing Image Classification [UNSEEN]
- https://www.researchgate.net/publication/356393038_Generalized_Unsupervised_Clustering_of_Hyperspectral_Images_of_Geological_Targets_in_the_Near_Infrared
- https://ieeexplore.ieee.org/abstract/document/10588073 -> Hyperspectral Image Classification Using Spatial and Spectral Features Based on Deep Learning [UNSEEN]
- https://www.researchgate.net/publication/333301728_Hyperspectral_Image_Classification_Method_Based_on_CNN_Architecture_Embedding_With_Hashing_Semantic_Feature
- https://www.researchgate.net/publication/323950012_Hyperspectral_Unmixing_Using_A_Neural_Network_Autoencoder
- https://www.researchgate.net/publication/339657313_Hyperspectral_unmixing_using_deep_convolutional_autoencoder
- https://www.researchgate.net/publication/339066136_Hyperspectral_Unmixing_Using_Deep_Convolutional_Autoencoders_in_a_Supervised_Scenario
- https://www.researchgate.net/publication/335878933_LITHOLOGICAL_CLASSIFICATION_USING_MULTI-SENSOR_DATA_AND_CONVOLUTIONAL_NEURAL_NETWORKS
- https://ieeexplore.ieee.org/abstract/document/10551851 -> MSNet: Self-Supervised Multiscale Network With Enhanced Separation Training for Hyperspectral Anomaly Detection
- https://www.researchgate.net/publication/331794887_Nonlinear_Unmixing_of_Hyperspectral_Data_via_Deep_Autoencoder_Networks
- https://ieeexplore.ieee.org/abstract/document/10534107 -> ReSC-net: Hyperspectral Image Classification Based on Attention-Enhanced Residual Module and Spatial-Channel Attention
- https://www.researchgate.net/publication/340961027_Recent_Advances_in_Hyperspectral_Unmixing_Using_Sparse_Techniques_and_Deep_Learning
- https://www.researchgate.net/publication/330272600_Semisupervised_Stacked_Autoencoder_With_Cotraining_for_Hyperspectral_Image_Classification
- https://www.researchgate.net/publication/336097421_Spatial-Spectral_Hyperspectral_Unmixing_Using_Multitask_Learning
- https://www.researchgate.net/publication/312355586_Spectral-Spatial_Classification_of_Hyperspectral_Imagery_with_3D_Convolutional_Neural_Network
- https://meetingorganizer.copernicus.org/EGU2020/EGU2020-10719.html -> Sentinel-2 as a tool for mapping iron-bearing alteration minerals: a case study from the Iberian Pyrite Belt (Southern Spain)
- https://www.researchgate.net/publication/334058881_SSDC-DenseNet_A_Cost-Effective_End-to-End_Spectral-Spatial_Dual-Channel_Dense_Network_for_Hyperspectral_Image_Classification
- https://www.researchgate.net/publication/333497470_Integration_of_auto-encoder_network_with_density-based_spatial_clustering_for_geochemical_anomaly_detection_for_mineral_exploration
- https://www.sciencedirect.com/science/article/pii/S0009281924000473 -> Geochemical characteristics and mapping of Reşadiye (Tokat-Türkiye) bentonite deposits using machine learning and sub-pixel mixture algorithms
Allgemein
- https://www.sciencedirect.com/science/article/pii/S0273117724004861?dgcid=rss_sd_all -> Optimization of machine learning algorithms for remote alteration mapping
- https://www.researchgate.net/publication/337841253_A_solar_optical_hyperspectral_library_of_rare_earth-bearing_minerals_rare_earth_oxides_copper-bearing_minerals_and_Apliki_mine_surface_samples
- https://ieeexplore.ieee.org/document/10536904 -> A Reversible Generative Network for Hyperspectral Unmixing With Spectral Variability
- https://www.researchgate.net/publication/3204295_Abundance_Estimation_of_Spectrally_Similar_Minerals_by_Using_Derivative_Spectra_in_Simulated_Annealing
- https://www.researchgate.net/publication/338371376_Accuracy_assessment_of_hydrothermal_mineral_maps_derived_from_ASTER_images
- https://www.researchgate.net/publication/337790490_Analysis_of_Most_Significant_Bands_and_Band_Ratios_for_Discrimination_of_Hydrothermal_Alteration_Minerals
- https://www.researchgate.net/project/Deep-Learning-for-Remote-Sensing-2
- https://ieeexplore.ieee.org/abstract/document/10589462 -> Deep Spectral Spatial Feature Enhancement through Transformer for Hyperspectral Image Classification
- https://www.researchgate.net/publication/331876006_Fusion_of_Landsat_and_Worldview_Images
- https://www.researchgate.net/publication/259096595_Geological_mapping_using_remote_sensing_data_A_comparison_of_five_machine_learning_algorithms_their_response_to_variations_in_the_spatial_distribution_of_training_data_and_the_use_of_explicit_spatial_
- https://www.researchgate.net/publication/341802637_Improved_k-means_and_spectral_matching_for_hyperspectral_mineral_mapping
- https://www.researchgate.net/publication/272565561_Integration_and_Analysis_of_ASTER_and_IKONOS_Images_for_the_Identification_of_Hydrothermally-_Altered_Mineral_Exploration_Sites
- https://www.researchgate.net/publication/236271149_Multi-_and_hyperspectral_geologic_remote_sensing_A_review_GRSG_Member_News
- https://www.researchgate.net/publication/220492175_Multi-and_Hyperspectral_geologic_remote_sensing_A_review
- https://www.sciencedirect.com/science/article/pii/S1574954124001572 -> Rapid estimation of soil Mn content by machine learning and soil spectra in large-scale
- https://www.researchgate.net/publication/342184377_remotesensing-12-01239-v2_1
- https://www.researchgate.net/project/Remote-sensing-exploration-of-critical-mineral-deposits
- https://www.researchgate.net/project/Sentinel-2-MSI-for-geological-remote-sensing
- https://www.researchgate.net/publication/323808118_Thermal_infrared_multispectral_remote_sensing_of_lithology_and_mineralogy_based_on_spectral_properties_of_materials
- https://www.researchgate.net/publication/340505978_Unsupervised_and_Supervised_Feature_Extraction_Methods_for_Hyperspectral_Images_Based_on_Mixtures_of_Factor_Analyzers
Afrika
- https://www.researchgate.net/publication/235443308_Application_of_remote_sensing_and_GIS_mapping_to_Quaternary_to_recent_surficial_sediments_of_the_Central_Uranium_district_Namibia
- https://www.researchgate.net/publication/342373512_Geological_mapping_using_Random_Forests_applied_to_Remote_Sensing_data_a_demonstration_study_from_Msaidira-Souk_Al_Had_Sidi_Ifni_inlier_Western_Anti-Atlas_Morocco
- https://www.researchgate.net/publication/340534611_Identifying_high_potential_zones_of_gold_mineralization_in_a_sub-tropical_region_using_Landsat-8_and_ASTER_remote_sensing_data_a_case_study_of_the_Ngoura-Colomines_goldfield_Eastern_Cameroon
- https://www.researchgate.net/publication/342162988_Lithological_and_alteration_mineral_mapping_for_alluvial_gold_exploration_in_the_south_east_of_Birao_area_Central_African_Republic_using_Landsat-8_Operational_Land_Imager_OLI_data
- https://www.researchgate.net/publication/329193841_Mapping_Copper_Mineralisation_using_EO-1_Hyperion_Data_Fusion_with_Landsat_8_OLI_and_Sentinel-2A_in_Moroccan_Anti_Atlas
- https://www.researchgate.net/publication/230918249_SPECTRAL_REMOTE_SENSING_OF_HYDROTHERMAL_ALTERATION_ASSOCIATED_WITH_VOLCANOGENIC_MASSIVE_SULPHIDE_DEPOSITS_GOROB-HOPE_AREA_NAMIBIA
- https://www.researchgate.net/publication/337304180_The_application_of_day_and_night_time_ASTER_satellite_imagery_for_geothermal_and_mineral_mapping_in_East_Africa
- https://www.researchgate.net/publication/336823002_Towards_Multiscale_and_Multisource_Remote_Sensing_Mineral_Exploration_Using_RPAS_A_Case_Study_in_the_Lofdal_Carbonatite-Hosted_REE_Deposit_Namibia
- https://www.researchgate.net/publication/338296843_Use_of_the_Sentinel-2A_Multispectral_Image_for_Litho-Structural_and_Alteration_Mapping_in_Al_Glo'a_Map_Sheet_150000_Bou_Azzer-El_Graara_Inlier_Central_Anti-Atlas_Morocco
Brasilien
- https://www.researchgate.net/publication/287950835_Altimetric_and_aeromagnetometric_data_fusion_as_a_tool_of_geological_interpretation_the_example_of_the_Carajas_Mineral_Province_PA
- https://www.researchgate.net/publication/237222985_Analise_e_integracao_de_dados_do_SAR-R99B_com_dados_de_sensoriamento_remoto_optico_e_dados_aerogeofisicos_na_regiao_dos_depositos_de_oxido_de_Fe-Cu-Au_tipo_Sossego_e_118_na_Provincia_Mineral_de_Caraja
- https://www.researchgate.net/publication/327503453_Comparison_of_Altered_Mineral_Information_Extracted_from_ETM_ASTER_and_Hyperion_data_in_Aguas_Claras_Iron_Ore_Brazil
- https://www.researchgate.net/publication/251743903_Enhancement_Of_Landsat_Thematic_Mapper_Imagery_For_Mineral_Prospecting_In_Weathered_And_Vegetated_Terrain_In_SE_Brazil
- https://www.researchgate.net/publication/228854234_Hyperspectral_Data_Processing_For_Mineral_Mapping_Using_AVIRIS_1995_Data_in_Alto_Paraiso_de_Goias_Central_Brazil
- https://www.researchgate.net/publication/326612136_Mapping_Mining_Areas_in_the_Brazilian_Amazon_Using_MSISentinel-2_Imagery_2017
- https://www.researchgate.net/publication/242188704_MINERALOGICAL_CHARACTERIZATION_AND_MAPPING_USING_REFLECTANCE_SPECTROSCOPY_AN_EXPERIMENT_AT_ALTO_DO_GIZ_PEGMATITE_IN_THE_SOUTH_PORTION_OF_BORBOREMA_PEGMATITE_PROVINCE_BPP_NORTHEASTERN_BRAZIL
China
- https://www.researchgate.net/publication/338355143_A_comprehensive_scheme_for_lithological_mapping_using_Sentinel-2A_and_ASTER_GDEM_in_weathered_and_vegetated_coastal_zone_Southern_China
- https://www.researchgate.net/publication/332957713_Data_mining_of_the_best_spectral_indices_for_geochemical_anomalies_of_copper_A_study_in_the_northwestern_Junggar_region_Xinjiang
- https://www.researchgate.net/publication/380287318_Machine_learning_model_for_deep_exploration_Utilizing_short_wavelength_infrared_SWIR_of_hydrothermal_alteration_minerals_in_the_Qianchen_gold_deposit_Jiaodong_Peninsula_Eastern_China
- https://www.researchgate.net/publication/304906898_Remote_sensing_and_GIS_prospectivity_mapping_for_magmatic-hydrothermal_base-_and_precious-metal_deposits_in_the_Honghai_district_China
Grönland
- https://www.researchgate.net/publication/326655551_Application_of_Multi-Sensor_Satellite_Data_for_Exploration_of_Zn-Pb_Sulfide_Mineralization_in_the_Franklinian_Basin_North_Greenland
- https://www.researchgate.net/publication/337512735_Fusion_of_DPCA_and_ICA_algorithms_for_mineral_detection_using_Landsat-8_spectral_bands
- https://www.researchgate.net/publication/336684298_Landsat-8_Advanced_Spaceborne_Thermal_Emission_and_Reflection_Radiometer_and_WorldView-3_Multispectral_Satellite_Imagery_for_Prospecting_Copper-Gold_Mineralization_in_the_Northeastern_Inglefield_Mobil
Indien
- https://www.researchgate.net/publication/337649256_Automated_lithological_mapping_by_integrating_spectral_enhancement_techniques_and_machine_learning_algorithms_using_AVIRIS-NG_hyperspectral_data_in_Gold-bearing_granite-greenstone_rocks_in_Hutti_India
- https://www.researchgate.net/publication/333816841_Integrated_application_of_AVIRIS-NG_and_Sentinel-2A_dataset_in_altered_mineral_abundance_mapping_A_case_study_from_Jahazpur_area_Rajasthan
- https://www.researchgate.net/publication/339631389_Identification_and_characterization_of_hydrothermally_altered_minerals_using_surface_and_space-based_reflectance_spectroscopy_in_parts_of_south-eastern_Rajasthan_India
- https://www.researchgate.net/publication/338116272_Potential_Use_of_ASTER_Derived_Emissivity_Thermal_Inertia_and_Albedo_Image_for_Discriminating_Different_Rock_Types_of_Aravalli_Group_of_Rocks_Rajasthan
Iran
- https://www.researchgate.net/publication/338336181_A_Remote_Sensing-Based_Application_of_Bayesian_Networks_for_Epithermal_Gold_Potential_Mapping_in_Ahar-Arasbaran_Area_NW_Iran
- https://www.researchgate.net/publication/338371376_Accuracy_assessment_of_hydrothermal_mineral_maps_derived_from_ASTER_images
- https://www.researchgate.net/publication/340606566_Application_of_Landsat-8_Sentinel-2_ASTER_and_WorldView-3_Spectral_Imagery_for_Exploration_of_Carbonate-Hosted_Pb-Zn_Deposits_in_the_Central_Iranian_Terrane_CIT
- https://www.researchgate.net/publication/331428927_Comparison_of_Different_Algorithms_to_Map_Hydrothermal_Alteration_Zones_Using_ASTER_Remote_Sensing_Data_for_Polymetallic_Vein-Type_Ore_Exploration_Toroud-Chahshirin_Magmatic_Belt_TCMB_North_Iran
- https://www.researchgate.net/publication/327832371_Band_Ratios_Matrix_Transformation_BRMT_A_Sedimentary_Lithology_Mapping_Approach_Using_ASTER_Satellite_Sensor
- https://www.researchgate.net/publication/331314687_Lithological_mapping_in_Sangan_region_in_Northeast_Iran_using_ASTER_satellite_data_and_image_processing_methods
- https://www.researchgate.net/publication/330774780_Mapping_hydrothermal_alteration_zones_and_lineaments_associated_with_orogenic_gold_mineralization_using_ASTER_data_A_case_study_from_the_Sanandaj-Sirjan_Zone_Iran
- https://www.researchgate.net/publication/380812370_Optimization_of_machine_learning_algorithms_for_remote_alteration_mapping
- https://www.researchgate.net/publication/362620968_Spatial_mapping_of_hydrothermal_alterations_and_structural_features_for_gold_and_cassiterite_exploration
Peru
- https://www.researchgate.net/publication/271714561_Geology_and_Hydrothermal_Alteration_of_the_Chapi_Chiara_Prospect_and_Nearby_Targets_Southern_Peru_Using_ASTER_Data_and_Reflectance_Spectroscopy
- https://www.researchgate.net/publication/317141295_Hyperspectral_remote_sensing_applied_to_mineral_exploration_in_southern_Peru_A_multiple_data_integration_approach_in_the_Chapi_Chiara_gold_prospect
Spanien
- https://www.researchgate.net/publication/233039694_Geological_mapping_using_Landsat_Thematic_Mapper_imagery_in_Almeria_Province_south-east_Spain
- https://www.researchgate.net/publication/263542786_WEIGHTS_DERIVED_FROM_HYPERSPECTRAL_DATA_TO_FACILITATE_AN_OPTIMAL_FIELD_SAMPLING_SCHEME_FOR_POTENTIAL_MINERALS
Andere
https://www.researchgate.net/publication/341611032_ASTER_spectral_band_ratios_for_lithological_mapping_A_case_study_for_measuring_geological_offset_along_the_Erkenek_Segment_of_the_East_Anatolian_Fault_Zone_Turkey
https://www.researchgate.net/publication/229383008_Hydrothermal_Alteration_Mapping_at_Bodie_California_using_AVIRIS_Hyperspectral_Data
https://www.researchgate.net/publication/332737573_Identification_of_alteration_zones_using_a_Landsat_8_image_of_densely_vegetated_areas_of_the_Wayang_Windu_Geothermal_field_West_Java_Indonesia
https://www.researchgate.net/publication/325137721_Interpretation_of_surface_geochemical_data_and_integration_with_geological_maps_and_Landsat-TM_images_for_mineral_exploration_from_a_portion_of_the_precambrian_of_Uruguay
https://www.researchgate.net/publication/336684298_Landsat-8_Advanced_Spaceborne_Thermal_Emission_and_Reflection_Radiometer_and_WorldView-3_Multispectral_Satellite_Imagery_for_Prospecting_Copper-Gold_Mineralization_in_the_Northeastern_Inglefield_Mobil
https://www.researchgate.net/publication/304036250_Mineral_Exploration_for_Epithermal_Gold_in_Northern_Patagonia_Argentina_From_Regional-_to_Deposit-Scale_Prospecting_Using_Landsat_TM_and_Terra_ASTER
https://www.researchgate.net/publication/340652300_New_logical_operator_algorithms_for_mapping_of_hydrothermally_altered_rocks_using_ASTER_data_A_case_study_from_central_Turkey
https://www.researchgate.net/publication/324938267_Regional_geology_mapping_using_satellite-based_remote_sensing_approach_in_Northern_Victoria_Land_Antarctica
https://www.researchgate.net/publication/379960654_From_sensor_fusion_to_knowledge_distillation_in_collaborative_LIBS_and_hyperspectral_imaging_for_mineral_identification
NLP
- https://ieeexplore.ieee.org/abstract/document/10544642 -> Assessing named entity recognition efficacy using diverse geoscience datasets [UNSEEN]
- https://link.springer.com/article/10.1007/s12371-024-01011-2 -> Can AI Get a Degree in Geoscience? Performance Analysis of a GPT-Based Artificial Intelligence System Trained for Earth Science (GeologyOracle)
- https://www.researchgate.net/publication/376671309_Enhancing_knowledge_discovery_from_unstructured_data_using_a_deep_learning_approach_to_support_subsurface_modeling_predictions
- https://www.mdpi.com/2220-9964/13/7/260 -> Extracting Geoscientific Dataset Names from the Literature Based on the Hierarchical Temporal Memory Model
- https://www.sciencedirect.com/science/article/pii/S0169136824002154 -> Three-dimensional mineral prospectivity mapping based on natural language processing and random forests: A case study of the Xiyu diamond deposit, China
LLM
- https://arxiv.org/pdf/2401.16822 - EarthGPT: A Universal Multi-modal Large Language Model for Multi-sensor Image Comprehension in Remote Sensing Domain
- https://link.springer.com/article/10.1007/s12371-024-01011-2 -> Can AI Get a Degree in Geoscience? Performance Analysis of a GPT-Based Artificial Intelligence System Trained for Earth Science (GeologyOracle)
- Geology Oracle web prototype - https://geologyoracle.com/ask-the-geologyoracle/
General-Interest
- https://arxiv.org/abs/2404.05746v1 -> Causality for Earth Science -- A Review on Time-series and Spatiotemporal Causality Methods
- https://www.researchgate.net/publication/384137154_Guidelines_for_Sensitivity_Analyses_in_Process_Simulations_for_Solid_Earth_Geosciences
- https://www.mdpi.com/1660-4601/18/18/9752 -> Learning and Expertise in Mineral Exploration Decision-Making: An Ecological Dynamics Perspective
- https://www.sciencedirect.com/science/article/pii/S2214629624001476 -> Mapping critical minerals projects and their intersection with Indigenous peoples' land rights in Australia
- https://www.sciencedirect.com/science/article/pii/S0169136824003470 -> Overcoming survival bias in targeting mineral deposits of the future: Towards null and negative tests of the exploration search space, accounting for lack of visibility
- https://www.sciencedirect.com/science/article/pii/S088329272400115X - > Ranking Mineral Exploration Targets in Support of Commercial Decision Making: A Key Component for Inclusion in an Exploration Information System
Tiefes Lernen
- https://arxiv.org/abs/2408.11804 -> Approaching Deep Learning through the Spectral Dynamics of Weights
- https://arxiv.org/pdf/2310.19909.pdf -> Battle of the Backbones: A Large-Scale Comparison of Pretrained Models across Computer Vision Tasks
- https://pure.mpg.de/rest/items/item_3029184_8/component/file_3282959/content -> Deep learning and process understanding for data-driven Earth system science
- https://www.tandfonline.com/doi/pdf/10.1080/17538947.2024.2391952 -> Deep learning for spatiotemporal forecasting in Earth system science: a review
- https://wires.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/widm.1554 -> From 3D point-cloud data to explainable geometric deep learning: State-of-the-art and future challenges
- https://arxiv.org/pdf/2410.16602 -> Foundation Models for Remote Sensing and Earth Observation: A Survey
- https://www.nature.com/articles/s41467-021-24025-8 -> Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data
- https://arxiv.org/abs/2404.07738 ResearchAgent: Iterative Research Idea Generation over Scientific Literature with Large Language Models
- https://ieeexplore.ieee.org/abstract/document/10605826 -> Swin-CDSA: The Semantic Segmentation of Remote Sensing Images Based on Cascaded Depthwise Convolution and Spatial Attention Mechanism
- https://www.sciencedirect.com/science/article/abs/pii/S0098300424000839#sec6 -> Leveraging automated deep learning (AutoDL) in geosciences