Editing thousands of facts into a transformer memory at once.
We recommend conda
for managing Python, CUDA, and PyTorch; pip
is for everything else. To get started, simply install conda
and run:
CONDA_HOME=$CONDA_HOME ./scripts/setup_conda.sh
$CONDA_HOME
should be the path to your conda
installation, e.g., ~/miniconda3
.
notebooks/memit.ipynb
demonstrates MEMIT. The API is simple; simply specify a requested rewrite of the following form:
request = [
{
"prompt": "{} plays the sport of",
"subject": "LeBron James",
"target_new": {
"str": "football"
}
},
{
"prompt": "{} plays the sport of",
"subject": "Michael Jordan",
"target_new": {
"str": "baseball"
}
},
]
Other similar example(s) are included in the notebook.
experiments/evaluate.py
can be used to evaluate any method in baselines/
.
For example:
python3 -m experiments.evaluate
--alg_name=MEMIT
--model_name=EleutherAI/gpt-j-6B
--hparams_fname=EleutherAI_gpt-j-6B.json
--num_edits=10000
--use_cache
Results from each run are stored at results/<method_name>/run_<run_id>
in a specific format:
results/
|__ MEMIT/
|__ run_<run_id>/
|__ params.json
|__ case_0.json
|__ case_1.json
|__ ...
|__ case_10000.json
To summarize the results, you can use experiments/summarize.py
:
python3 -m experiments.summarize --dir_name=MEMIT --runs=run_<run1>,run_<run2>
Running python3 -m experiments.evaluate -h
or python3 -m experiments.summarize -h
provides details about command-line flags.
@article{meng2022memit,
title={Mass Editing Memory in a Transformer},
author={Kevin Meng and Sen Sharma, Arnab and Alex Andonian and Yonatan Belinkov and David Bau},
journal={arXiv preprint arXiv:2210.07229},
year={2022}
}